БЕЛЫЙ ШУМ В НЕКОТОРЫХ ЗАДАЧАХ МОДЕЛИРОВАНИЯ ИНФОРМАЦИОННЫХ СИГНАЛОВ

В.Н. Зварич, М.В. Мислович

Èlektron. model. 2018, 40(2):17-26
https://doi.org/10.15407/emodel.40.02.017

АННОТАЦИЯ

Предложен конструктивный метод задания математических моделей информационных сигналов на основе белых шумов. В качестве примера построения математических моделей рассмотрены линейные случайные процессы, линейные случайные процессы с периодическими структурами, линейные процессы авторегресии, линейные процессы авторегрессии с периодическими структурами.

КЛЮЧЕВЫЕ СЛОВА:

белый шум, линейный случайный процесс, линейные случайные процессы с периодическими структурами, линейные процессы авторегресии.

СПИСОК ЛИТЕРАТУРЫ

1. Ito, K. (1954), Stationary random distribution, Mem. Coll. Univ., Vol. 28, pp.209-223.
2. Kolmogorov, A. (1932), Sulla forma generale di un processo stocastieo omegeneo, Atti. della Reale Academia nazionale dei Lincei. Ser. sesta Rendiconti, Vol. 15, no.10, pp. 805-808.
3. Khinchin, A. (1938), Predelnye zakony dlya sum nezavisimykh stokhasticheskikh velichin [Limit laws for sums of independent stochastic values], ONTI, Moscow-Leningrad, USSR.
4. Martchenko, B. (1973), Metod stokhasticheskikh integralnykh predstavleniyi i yego primeneniye v radiotekhnike [Method of stochastic integral representations and its applications in radio-engineering], Naukova dumka, Kiev, USSR.
5. Brockwell, P.J. and Davis, R.A. (2002), Introduction to time series and forecasting, 2nd edition, Springer, New York, USA.
6. Iwueze, I.S., Arimie, C.O., Iwu, H.C. and Onyemachi, E. (2017), Some applications of the linear Gaussian white noise process, Applied Mathematics, Vol. 8, pp. 1918-1938.
7. Zvaritch, V., Myslovitch, M. and Martchenko, B. (1994), White noise in information signals models, Appl. Math. Lett., Vol. 7, no. 3, pp. 93-95.
8. Ogura, H. (1971), Spectral representation of a periodic nonstationary random process, IEEE Transaction of Information Theory, Vol. IT-17, no. 2, pp. 143-149.
9. Skhorokhod, A. (1964), Sluchainye protsessy c nezavisimymi prirashcheniyami [Random processes with independent increments], Nauka, Moscow, USSR.
10. Slutskiy, Å.Å. (1960), Izbrannye statyi [Selected papers], Izdatelstvo Academii Nauk SSSR, Moscow, USSR.
11. Zvaritch, V., Myslovitch, M. and Martchenko, B. (1995), The models of random periodic information signals on the white noise bases, Appl. Math. Lett., Vol. 8, no. 3, pp. 87-89.
12. Zvaritch, V., Myslovitch, M. and Martchenko, B. (1995), Stochastically periodical random processes used as models of information signals, Radioelectronics and Communication Systems, Vol. 38, no. 1, pp. 129-132.
13. Zvarich, V.N. and Marchenko, B.G. (1999), “The method of determining characteristic functions of the generating processes for linear autoregression processes”, Izvestiya Vysshikh Uchebnykh Zavedeniy Radioelektroniki, Vol. 42, no. 7, pp. 64-71.
14. Zvarich, V.N. and Marchenko, B.G. (2002), “Characteristic function of the generating process in the model of stationary linear AR-gamma process”, Izvestiya Vysshikh Uchebnykh Zavedeniy Radioelektroniki, Vol. 45, no. 8, pp. 12-18.
15. Zvarich, V.N. (2016), Peculiarities of finding characteristic functions of generating process in the model of stationary linear AR(2) process with negative binomial distribution, Radioelectronics and Communication Systems, Vol. 59, no. 12, pp. 567-573.
16. Zvarich, V.N. and Marchenko, B.G. (2011), Linear autoregressive processes with periodic structures as models of information signals, Radioelectronics and Communication Systems, Vol. 54, no. 7, pp. 367-372.
17. Shao, X. (2011), Testing for white noise under unknown dependence and its applications to diagnostic checking for time seriesmodels, Econometric Theory,Vol. 27, no. 2, pp. 312-343.
18. Zvaritch, V. and Glazkova, E. (2015), Some singularities of kernels of linear AR and ARMA processes and their applications to simulation of information signals, Computational Problems of Electrical Engineering, Vol. 5, no. 1, pp. 71-74.

ZVARITCH Valerij Nikolayevich, Doctor of sciences (engineering), leading scientific worker of the Institute of Electrodynamics, NAS of Ukraine, graduated from the National Technical University of Ukraine «Kiev Polytechnic Institute» in 1982. Sphere of scientific research: modeling of information signals with the use of statistical approach, development of computer systems of vibrodiagnostics.

MYSLOVICH Mikhail Vladimirovich, Doctor of sciences (engineering), professor, head of the department of the Institute of Electrodynamics, NAS of Ukraine, graduated from the National Technical University of Ukraine «Kiev Polytechnic Institute» in 1975. Sphere of scientific research: mathematical modeling, technical diagnostics, mathematical statistics, processing of signals.

Полный текст: PDF