ENERGY DISTRIBUTION MODELS AT THE INTERFACE IN DENSE ENERGY FIELDS OF THE SOLAR CONCENTRATOR SYSTEM

Y.S. Chernozomov

Èlektron. model. 2020, 42(6):34-55
https://doi.org/10.15407/emodel.42.06.034

ABSTRACT

Possibilities of providing admissible thermal modes of the elements working in dense energy fields of the offered solar concentrator are analyzed. The principle and features of its functioning are described. Methods of providing admissible thermal modes of operation of its optical elements taking into account electrodynamic features of solar radiation are offered. Models of energy distribution at the interface of media and methods of creating the effect of complete reflection on elements operating in dense energy fields are considered.

KEYWORDS

index of refraction, invariants of Кеttеlеrа, anisotropy, ferrits, mеtаmaterials, screening measure.

REFERENCES

  1. Akhadov, Zh.Z. (2016), “Combined power plant with solar concentrators”, LAP LAMBERT Academic Publising.
  2. Kozelkin, V.V., Usoltsev, I.F. (1967), “Fundamentals of infrared technology”, Mashinostroyeniye, Moscow, USSR.
  3. Libenson, M.N., Yakovlev, E.B., Shandybina, G.D. (2008), Vzaimodeystviye lazer­nogo izlucheniya s veshchestvom (silovaya optika). Chast I. Pogloshcheniye lazernogo izlucheniya v veshchestve [Interaction of laser radiation with matter (power optics). Part I. Absorption of laser radiation in matter], ITMO University, St. Petersburg, Russia.
  4. Veiko, V.P., Libenson, M.N., Chervyakov, G.G., Yakovlev, E.B. (2008), Vzaimodeist­viye lazernogo izlucheniya s veshchestvom. Silovaya optika [Interaction of laser radiation with matter. Power optics], FIZMATLIT, Moscow, Russia.
  5. Chernozomov, E.S. (2018), Patent № 120802, IPC (2020.01) F24S 10/00, G02B 6/00, F24S 20/20 (2018.01), F24S 23/00 “Device for concentration and transmission of solar radiation”, 06907; application date June 20, 2018, publication date February 10, 2020; Bulletin № 3.
  6. Sokolov, A.V. (1961), Opticheskiye svoystva metallov [Optical properties of metals], FIZMATLIT, Moscow, USSR.
  7. Sarzhevsky, A.M. (2004), Polnyy kurs [Optics. Complete course], Editorial URSS, Moscow, Russia.
  8. Born, M., Wolf, E. (1973), Osnovy optiki [Fundamentals of optics], Translated by Rayskaya, N.A., Nauka, Moscow, USSR.
  9. King, W. (1928), Light As wave motion. The Physics book, Springer, Berlin, Germany.
  10. Abilsiitov, G.A., Golubev, V.S., Gontar, V.G. et al. (1991), Tekhnologicheskiye lazery. Spravochnik [Technological lasers: Handbook], Vol. 1, Mashinostroyeniye, Moscow, USSR.
  11. Klimkov, Yu.M., Mayorov, V.S., Khoroshev, M.V. (2014), Vzaimodeystviye lazernogo izlucheniya s veshchestvom: uchebnoye posobiye [Interaction of laser radiation with matter: a tutorial], MIIGAiK, Moscow, Russia.
  12. Kizel, V.A. (1973), Otrazheniye sveta. Seriya: Fizika i tekhnika spektralnogo analiza [Reflection of light. Series: Physics and Technique of Spectral Analysis], Nauka, Moscow, USSR.
  13. Solovyanova, I.P., Naimushin, M.P. (2005), Teoriya volnovykh protsessov. Elektromagnitnyye volny. Uchebnoye posobiye [The theory of wave processes. Electromagnetic waves. Tutorial], GOU VPO USTU - UPI, Yekaterinburg, Russia.
  14. Kuzmichev, V.E. (1989), Zakony i formuly fiziki [Laws and formulas of physics], Naukova dumka, Kiev, USSR.
  15. Ginzburg, V.L. (1960), Rasprostraneniye elektromagnitnykh voln v plazme [Propagation of electromagnetic waves in plasma], Translated by Kozlov, V.D., Fizmatizdat, Moscow, USSR.
  16. Veselago, V.G. (1967), Elektrodinamika veshchestv s odnovremenno otritsatel'nymi znacheniyami ε i µ [Electrodynamics of substances with simultaneously negative values ​​of ε and µ], Vol. 92, no. 3, pp. 517-526.
  17. Krinchik, G.S., Chetkin, M.V. (1961), State diploma register of discoveries of the USSR №175 “Abnormal magnetic susceptibility of ferromagnets in the optical frequency range”, with priority from March 17, 1961; publication date May 27, 1976.
  18. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart W.J. (1999), “Magnetism from conductors and enhanced nonlinear phenomena”, IEEE Transactions on Microwave Theory and Techniques, Vol. 47, pp. 2075-2084.
    https://doi.org/10.1109/22.798002
  19. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultzs, S. (2000), “Composite medium with simultaneously negative permeability and permittivity”, Physical Review Letters, Vol. 84, pp. 4184-4187.
    https://doi.org/10.1103/PhysRevLett.84.4184

Full text: PDF