A.F. Verlan, L.O. Mitko, O.A. Dyachuk

Èlektron. model. 2021, 43(5):03-20


The problem of mathematical description of nonlinear dynamical systems remains relevant today, especially given the need to build modern surveillance systems for complex technical objects, such as power plants. The use of polynomial operators obtained with the help of shortened Volterra series to solve this problem, as practice has shown, proved to be promising, because this method allows to display in the mathematical model both nonlinear and dynamic properties of systems. For further development of the method, it is advisable to analyze diffe­rent approaches in order to build effective algorithms for obtaining and applying in the problems of monitoring the functioning of nonlinear systems.


nonlinear systems, integrated models, Volterra series, computational efficiency, polynomial expression, experimental data, control, diagnostics.


  1. Mesarovich, M., Takahara, Ja. (1978), Obshchaya teoriya sistem: Matematicheskiye osnovy [General Systems Theory: Mathematical Foundations], Mir, Moscow, USSR.
  2. Orava, P.J. (1979), “On the concepts of input-output model, causality, and state in the theory of dynamical systems and control”, Acta Polytechnica Scandinavica Mathematics and Computing Series, Vol. 31, pр. 120-127.
  3. Viner, N. (1961), Nelineynyye zadachi teorii sluchaynykh protsessov [Nonlinear problems of the theory of stochastic processes], Izdatel'stvo inostrannoy literatury, Moscow, USSR.
  4. Pupkov, K.A. (1965), Statisticheskiy raschet nelineynykh sistem avtomaticheskogo [Statistical calculation of nonlinear automatic systems], Mashinostroyeniye, Moscow, USSR.
  5. Eykkhoff, P. (1975), Osnovy identifikatsii sistem upravleniya [Fundamentals of identification of control systems], Mir, Moscow, USSR.
  6. Billings, S.A. (1980), “Identification of nonlinear system – a servey”, IEEE Proceedings, 127, no. 6, рp. 272-285.
  7. Pupkov, K.A., Kapalin, V.I. and Yushchenko, A.S. (1976), Funktsionalnyye ryady v teorii nelineynykh sistem [Functional series in the theory of nonlinear systems], Nauka, Moscow, USSR.
  8. Popkov, Yu.S., Kiselev, O.N., Petrov, N.P. and Shmulyan, V.L. (1976), Identifikatsiya i optimizatsiya nelineynykh stokhasticheskikh sistem [Identification and optimization of nonlinear stochastic systems], Energiya, Moscow, USSR.
  9. Tribel, Kh. (1980), Teoriya interpolyatsii, funktsional'nyye prostranstva, differentsial'nyye operatory [Interpolation theory, function spaces, differential operator], Mir, Moscow, USSR.
  10. Prenter, P.M. (1971), “Lagrange and Hermite interpolation in Banach space”, Journal of Approximation Theory, Vol. 4, no. 4, рр. 419-432.
  11. Porter, W.A. (1975), “Data Interpolation: causality, structure and system identification”, Information and Control, Vol. 29, no. 3, рр. 217-233.
  12. Pukhov, G.Ye., Khatiashvili, Ts.S. (1979), Kriterii i metody identifikatsii obyektov [Object identification criteria and methods], Naukova dumka, Kiev, USSR.
  13. Raĭbman, N.S., Kapitonenko, V.V., Ovsepyan, F.A. and others (1981), Dispersionnaya identifikatsiya [Dispersion identification], Nauka, Moscow, USSR.
  14. King, R.E. and Paraskevopoulos, P.N. (1979), “Parametric identification of discrete-time SISO systems”, International Journal of Control, Vol. 30, no. 6, pр. 1023-1029.
  15. Netravali, A.N. and De Figmireolo, P.J. (1971), “On the Identification of Nonlinear Dynamical Systems”, IEEE Transactions on Automatic Control, Vol. 16, no. 1, pр. 28-36.
  16. Kartuzov, V.V. (1977), “Chain approximation schemes for dynamic processes”, Doklady Akademii nauk SSSR, Vol. 2, рр. 175-179.

Full text: PDF