A.F. Zharkin, V.O. Novskiy, V.A. Popov, O.S. Yarmoliuk, Hawkar Ahmed Noory

Èlektron. model. 2021, 43(1):46-66


An overview of the statements and methods for implementing the problem of distribution networks reconfiguration, as one of the most effective organizational measures to reduce electrical energy losses, is presented. Various formulations of this problem and optimization methods used for its solution are analyzed considering its as a medium-term planning problem, when the optimal disconnection points were determined for the most characteristic seasons of the year. It is shown that in modern power supply systems under the conditions of widespread implementation of distributed generation energy sources and storage units, the use of electric vehicles, the solution of this problem within the framework of the traditional approach loses its effectiveness. It is shown that in this case it is necessary to use the dynamic reconfiguration of distribution networks. Here one of the possible ways is associated with the use of remotely controlled switching devices. An algorithm that allows one to choose the optimal locations and operating mode of switches with remote control, for electrical energy losses minimization, taking into account the switching resource, is proposed. It has been demonstrated that this technical solution is justified in the case of cyclic and sufficiently long-term changes in loads, output power of distributed energy sources, when turning on/off storage devices. It is shown that a more universal solution is the use of power electronics, which makes it possible to form the so-called “soft” open points of the distribution network circuits. Under these conditions, it becomes possible to realize the real time control of the active and reactive power flows, ensuring the minimization of electrical energy losses.


electrical distribution networks, mode of operation control, distributed generation, remotely controlled switching devices, soft open points.


  1. Malii, N.O. (1973), “Methods for optimizing the operational modes of urban electrical networks”, Abstract of Cand. Sci. (Tech.) dissertation, Kyiv Polytechnic Institute, Kyiv, USSR.
  2. Popov, V.A. (1982), “Selection of schemes of redundant distribution networks with a minimum of electricity losses”, Enerhetyka ta elektryfikatsiia, Vol. 4, pp. 25–28.
  3. Fokin, Y.A. and Hoziainov, M.A. (1990), “A method for finding a suitable topology when planning the modes of distribution networks”, Sbornik nauchnykh trudov Moskovskogo energeticheskogo instituta: optimizatsiya sistemy elektroenergeticheskikh sistem, Vol. 230, pp. 175–180.
  4. Billinton, R. and Jonavithula, S. (1996), “Optimal switching devise placement in radial distribution systems”, IEEE Transactions on Power Delivery, Vol. 11, no. 3, pp. 1646–1651.
  5. Gelli, G. and Pilo, F. (1996), “Optimal sectionalizing switches allocation in distribution networks”, IEEE Transactions on Power Delivery, Vol. 14, no. 3, pp. 1167–1172.
  6. Ekel, P.Y., Popov, V.A. and Kliushnik, A.I. (1986), “Taking into account the response of the supply network in the problems of optimization of distribution network modes”, Elektrychni merezhi i systemy, Vol. 22, pp. 65–72.
  7. Shydlovskyi, A.K. and Tugai, Y.I. (1981), Koordynovana optymizatsiia rezhymiv zhyvylnoi i rozpodilnoi elektrychnykh merezh [Coordinated optimization of power supply and distribution networks], Instityt electrodynamiky, Kyiv, USSR.
  8. Boardman, J.T. and Meckiff, С.С. (1985), “A Branch and Bound Formulation to Electricity Distribution Planning Program”, IEEE Transactions on Power Apparatus and Systems, Vol. 104, pp. 2112–2118.
  9. Jabr, R.A., Singh, R. and Pal, B.C. (2012), “Minimum loss network reconfiguration using mixed-integer convex programming”, IEEE Transactions on Power Systems, Vol. 27, pp. 1106–1115.
  10. Glamokanin, V. (1990), “Optimal loss reduction of distribution networks”, IEEE Transactions on Power Systems, Vol. 5, no. 3, pp. 774–782.
  11. Sharatkhah, M.M., Haghifam, M.R. and Arefi, A. (2011), “Load profile based determination of distribution feeder configuration by dynamic programming”, IEEE Trondheim PowerTech Conference, Vol. 12, pp. 1–6.
  12. Broadwater, R.P. (2003), “Time varying load analysis to reduce distribution losses through reconfiguration”, IEEE Transaction on Power Delivery, Vol. 8, no. 1, pp. 294–300.
  13. Zhu, J.Z. (2002), “Optimal Reconfiguration of electrical distribution network using the refined genetic algorithm”, Electric Power Systems Research, Vol. 62, no. 1, pp. 37–42.
  14. Su, C.-T., Chang, C.-F. and Chiou, J.-P. (2005), “Distribution network reconfiguration for loss reduction by ant colony search algorithm”, Electric Power Systems Research, Vol. 75, no. 2–3, pp. 190–199.
  15. Olamaei, J., Niknam, T. and Arefi, S.B. (2011), “Distribution feeder reconfiguration for loss minimization based on modified honey bee mating optimization algorithm”, the 2nd International Conference on Advances in Energy Engineering, Vol. 5, pp. 304–311.
  16. Young, J.J., Chul, K.J., Kim, Jin-O., Joong-Rin Shin, J.O. and Lee, K.Y. (2002), “An efficient simulated annealing algorithm for network reconfiguration in large-scale distribution systems”, IEEE Transactions on Power Delivery, Vol. 17, no. 4, pp. 1070–1078.
  17. Abdelaziz, A.Y., Mohamed, F.M., Mekhamer, S.F. and Badr, M.A.L. (2010), “Distribution system reconfiguration using a modified Tabu Search algorithm”, Electric Power Systems Research, Vol. 80, no. 8, pp. 943–953.
  18. Abdelaziz, A.Y., Mohammed, F.M., Mekhamer, S.F. and Badr, M.A.L. (2009), “Distribution Systems Reconfiguration using a modified particle swarm optimization algorithm”, Electric Power Systems Research, Vol. 79, pp. 1521–1530.
  19. Kim, H., Ko, Y. and Jung, K.H. (1993), “Artificial Neural-Network Based Feeder Reconfiguration for Loss Reduction in Distribution Systems”, Proc. IEEE Transactions on Po­wer Delivery, Vol. 8, pp. 1356–1366.
  20. Bernardon, D.P., Sperandio, M., Garcia, V.J., Canha, L.N., Abaide, A.D.R. and Daza, E.F.B. (2011), “AHP decision-making algorithm to allocate remotely controlled switches in distribution networks”, IEEE Transactions on Power Delivery, Vol. 26, no. 3, pp. 1884–1892.
  21. Ahuja, A., Das, S. and Pahwa, A. (2007), “An AIS-ACO hybrid approach for multi-objective distribution system reconfiguration”, IEEE Transactions on Power Systems, Vol. 22, pp. 1101–1111.
  22. Tulle, D.P. and Baldick, R. (2012), “The evaluation of plug-in electric vehicle-grid interactions”, IEEE Transactions on Smart Grid, Vol. 3, no. 1, pp. 500–505.
  23. Shidlovskiі, А.К., Zharkin, A.F., Pavlov, V.B. and Novskiy, V.A. (2018), “Influence of development of charging infrastructure for electric vehicles and hybrid transport on modes of electric networks”, Tekhnichna Elektrodynamika, Vol. 3. Pp. 74–81.
  24. Pavlov, V.B., Novskiy, V.A. Popov, V.A. and Palachov, S.O. (2018), “Features of use of electrical vehicle charger station in urban electrical networks”, Tekhnichna Elektrodynamika, Vol. 6. Pp. 77–80.
  25. Wu, Y., Lee, C., Liu, L. and Tsai, S. (2010), “Study of Reconfiguration for the Distribution System with Distributed Generators”, IEEE Transactions on Power Delivery, Vol. 25, no. 3, pp. 1678–1685.
  26. Office of Gas and Electricity Markets, Losses incentive mechanism, available at: (accessed August 25, 2020).
  27. Xu, Y., Liu, C.C., Schneider, K.P. and Ton, D.T. (2016), “Placement of remote-controlled switches to enhance distribution systems restoration capability”, IEEE Transactions on Power Systems, Vol. 31, pp. 1139–1150.
  28. Spitsa, V., Ran, X., Salcedo, R., Martinez, J.F., Uosef, R.E., de Leon, F., Czarkowski, D. and Zabar, Z. (2012), “On the Transient Behavior of Large-Scale Distribution Networks During Automatic Feeder Reconfiguration”, IEEE Transactions on Smart Grid, Vol. 3, no. 2, pp. 887–896.
  29. Zharkin, А.F., Denysiuk, S.P. and Popov, V.A. (2017), Systemy elektropostachannia z dzherelamy rozpodilenoi heneratsii [Power supply systems with distributed generation sources], Naukova dumka, Kyiv, Ukraine.
  30. Garcia, E.D., Pereira, P.R., Canha, L.N. and Popov, V.A. (2018), “Grid functional blocks methodology to dynamic operation and decision making in Smart Grid”, Electrical Power and Energy Systems, Vol. 103, pp. 267–276.
  31. Bloemink, J.M. and Green, T.C. (2013),” Benefits of distribution-level power electronics for supporting distributed generation growth”, IEEE Transactions on Power Delivery, Vol. 28, pp. 911–917.
  32. Cao, W., Wu, J., Jenkins, N., Wang, Ch. and Green, T. (2016), “Benefits analysis of soft open points for electrical distribution network operation”, Applied Energy, Vol. 165, pp. 36–47.
  33. Flourentzou, N., Adelidis, V.G. and Demetriades, C.D. (2009), “VSC – based HVDC power transmission systems: an overview”, IEEE Transactions on Power Electronics, Vol. 24, pp. 592–602.
  34. Daelemans, G., Srivastava, K., Reza, M., Cole, S. and Belmans, R. (2009), “Minimization of steady state losses in meshed networks using VSC HVDC”, IEEE Power and Energy Society General Meeting, pp. 1–5.
  35. Powell, M.J.D. (1964), “An efficient method for finding the minimum of a function of several variables without calculating derivatives”, Comput, Vol. 7, pp. 155–162.

Full text: PDF