HYBRID PARALLEL EQUATION SOLVER FOR NORMAL AIR DISTRIBUTION` BASED ON DIRECT METHOD

A.L. Masyuk

Èlektron. model. 2017, 39(2):47-58
https://doi.org/10.15407/emodel.39.02.047

ABSTRACT

Structure of the parallel equation solver for the problem of normal air distribution in mine ventilation network is analyzed and improved in the way of merging the existing MIMD structure with the integrated SIMD facilities of the modern CPUs. The algorithm of direct method-based equation solver has been improved by SSE and AVX extensions. Usage of SIMD component of the hybrid MIMD+SIMD structure allows decreasing the amount of the computational iterations several times, thus accelerating the whole simulation process.

KEYWORDS

parallel algorithm, mine ventilation network, normal air distribution, direct method, integrated SIMD facilities.

REFERENCES

1. Pererva, A.A. (1999), “Equation generator and solver of the problem-oriented parallel modeling environment for network objects with non-distibuted parameters”, Naukovi pratsi Donetskogo Natsionalnogo Tekhnichnogo Universytetu. Seria: “Problemy modelyuvannya ta avtomatyzatsii proektuvannya”, Iss. 10, pp. 164-169.
2. Svjatnyj, V.A. (2006), “Parallel modeling of the complex dynamic systems”, Mezhdunarodnaya konferentsiya. Modelirovanie-2006 [International conference. Simulation], Kyiv, 2006, pp. 83-90.
3. Feldmann, L.P, Svjatnyj, V.A., Resch, M. and Zeitz, M. (2008), Forschungsgebiet: parallele Simulationstechnik (German), Reihe “Probleme der Modellierung und rechnergestützten Projektierung von dynamischen Systemen”, DonNTU, FRTI-Werke, Vol. 9 (150), pp. 9-36.
4. Svjatnyj, V.A., Smagin, O.M. and Solonin, O.M (2003), “Methods of parallelisation of the equation solver for MIMD-model of a network dynamic object”, Naukovi pratsi Donetskogo Natsionalnogo Tekhnichnogo Universytetu. Seria: Informatika, kibernetika ta obchyslyuvalna tekhnika, Iss. 70, pp. 20-30.
5. Smagin, A.N. (2008), “Efficiency of MPI and OPENMP standards-based MIMD equation solvers for air dynamics of mine airing networks”, Materialy IV Naukovo-praktychnoi konferentsii Donbas-2020: Nauka i tekhnika vyrobnytstvu [Materials of IV Scientific-Practical Conference Donbas-2020: Science and Technology for Industry], Donetsk, May 27-28, 2008, pp. 432-436.
6. Guseva, G.B. and Moldovanova, O.V. (2007), “MIMD parallel equation solver of the network dynamic object with distributed parameters”, Naukovi pratsi Donetskogo Natsionalnogo Tekhnichnogo Universytetu. Seria: “Problemy modelyuvannya ta avtomatyzatsii proektuvannya”, pp. 149-158.
7. Svjatnyj, V.A. and Moldovanova O.V. (1999), “Equation generator for a parallel model of the network dynamic object with distributed parameters”, Naukovi pratsi Donetskogo Natsionalnogo Tekhnichnogo Universytetu. Seria: “Problemy modelyuvannya ta avtomatyzatsii proektuvannya”, Iss. 10, pp. 135-141.
8. Mikov, A.I. and Zamyatina, E.B. “Loading balance in the distributed systems”, Natsionalny otkryty institut “Intuit”, available at: http://www.intuit.ru/department/algorithms/distrsa/9/1.html

Full text: PDF (in Russian)