White Noise in Some Simulation Problems of Information Signals

V.N. Zvaritch, Dr Sc. (Eng.), M.V. Myslovych, Dr Sc. (Eng.)
Institute of Electrodynamics of the National Academy of Sciences of Ukraine
56, Pobeda Av. Kyiv, 03680, Ukraine,
e-mail: zvaritch@nas.gov.ua; mysl@ied.org.ua

Èlektron. model. 2018, 40(2):17-26
https://doi.org/10.15407/emodel.40.02.017

ABSTRACT

A constructive method of information signal mathematical models characterization on the white noise basis is developed. Linear random processes, linear random processes with periodic structures, linear autoregressive processes, linear autoregressive processes with periodic structures are represented as examples of the method application.

KEYWORDS

white noise, linear random process, linear random process with periodic structures, linear autoregressive processes.

REFERENCES

1. Ito, K. (1954), Stationary random distribution, Mem. Coll. Univ., Vol. 28, pp.209-223.
2. Kolmogorov, A. (1932), Sulla forma generale di un processo stocastieo omegeneo, Atti. della Reale Academia nazionale dei Lincei. Ser. sesta Rendiconti, Vol. 15, no.10, pp. 805-808.
3. Khinchin, A. (1938), Predelnye zakony dlya sum nezavisimykh stokhasticheskikh velichin [Limit laws for sums of independent stochastic values], ONTI, Moscow-Leningrad, USSR.
4. Martchenko, B. (1973), Metod stokhasticheskikh integralnykh predstavleniyi i yego primeneniye v radiotekhnike [Method of stochastic integral representations and its applications in radio-engineering], Naukova dumka, Kiev, USSR.
5. Brockwell, P.J. and Davis, R.A. (2002), Introduction to time series and forecasting, 2nd edition, Springer, New York, USA.
https://doi.org/10.1007/b97391
6. Iwueze, I.S., Arimie, C.O., Iwu, H.C. and Onyemachi, E. (2017), Some applications of the linear Gaussian white noise process, Applied Mathematics, Vol. 8, pp. 1918-1938.
https://doi.org/10.4236/am.2017.812136
7. Zvaritch, V., Myslovitch, M. and Martchenko, B. (1994), White noise in information signals models, Appl. Math. Lett., Vol. 7, no. 3, pp. 93-95.
https://doi.org/10.1016/0893-9659(94)90120-1
8. Ogura, H. (1971), Spectral representation of a periodic nonstationary random process, IEEE Transaction of Information Theory, Vol. IT-17, no. 2, pp. 143-149.
https://doi.org/10.1109/TIT.1971.1054612
9. Skhorokhod, A. (1964), Sluchainye protsessy c nezavisimymi prirashcheniyami [Random processes with independent increments], Nauka, Moscow, USSR.
10. Slutskiy, Å.Å. (1960), Izbrannye statyi [Selected papers], Izdatelstvo Academii Nauk SSSR, Moscow, USSR.
11. Zvaritch, V., Myslovitch, M. and Martchenko, B. (1995), The models of random periodic information signals on the white noise bases, Appl. Math. Lett., Vol. 8, no. 3, pp. 87-89.
https://doi.org/10.1016/0893-9659(95)00035-O
12. Zvaritch, V., Myslovitch, M. and Martchenko, B. (1995), Stochastically periodical random processes used as models of information signals, Radioelectronics and Communication Systems, Vol. 38, no. 1, pp. 129-132.
13. Zvarich, V.N. and Marchenko, B.G. (1999), “The method of determining characteristic functions of the generating processes for linear autoregression processes”, Izvestiya Vysshikh Uchebnykh Zavedeniy Radioelektroniki, Vol. 42, no. 7, pp. 64-71.
14. Zvarich, V.N. and Marchenko, B.G. (2002), “Characteristic function of the generating process in the model of stationary linear AR-gamma process”, Izvestiya Vysshikh Uchebnykh Zavedeniy Radioelektroniki, Vol. 45, no. 8, pp. 12-18.
15. Zvarich, V.N. (2016), Peculiarities of finding characteristic functions of generating process in the model of stationary linear AR(2) process with negative binomial distribution, Radioelectronics and Communication Systems, Vol. 59, no. 12, pp. 567-573.
https://doi.org/10.3103/S0735272716120050
16. Zvarich, V.N. and Marchenko, B.G. (2011), Linear autoregressive processes with periodic structures as models of information signals, Radioelectronics and Communication Systems, Vol. 54, no. 7, pp. 367-372.
https://doi.org/10.3103/S0735272711070041
17. Shao, X. (2011), Testing for white noise under unknown dependence and its applications to diagnostic checking for time seriesmodels, Econometric Theory,Vol. 27, no. 2, pp. 312-343.
https://doi.org/10.1017/S0266466610000253
18. Zvaritch, V. and Glazkova, E. (2015), Some singularities of kernels of linear AR and ARMA processes and their applications to simulation of information signals, Computational Problems of Electrical Engineering, Vol. 5, no. 1, pp. 71-74.

Full text: PDF