FAULT DETECTION IN COMBINATIONAL LOGIC CIRCUITS BASED ON SYMMETRICALLY INDEPENDENT OUTPUTS GROUPS CHECKING

V.V. Sapozhnikov, V.Vl. Sapozhnikov, D.V. Efanov

Èlektron. model. 2020, 42(2):03-24
https://doi.org/10.15407/emodel.42.02.003

ABSTRACT

The main study results of the testing methods development for combinational circuits based on the properties of the codes focused on the errors detection of certain types and multiplicities are described. It is established that when using classical sum codes (Berger's code) and a number of their modifications when organizing checking of combinational circuits, it is possible to use the features of detecting unidirectional and some non-unidirectional errors in data vectors. It is shown that it is possible to search for such output’s groups on which only symmetrical errors occur due to single-error of the circuit internal structural elements. Such output groups are called symmetrically independent (SI-groups) outputs. The combinational circuit outputs group belonging conditions to the outputs SI-groups are determined. It is shown that each outputs SI-group can be controlled using a separate check subsystem based on a code with the detection of any asymmetric errors (and any asymmetric errors to certain multiplicities). Methods are proposed for searching for outputs SI-groups in combinational circuits organizing control. Particular attention is paid to the faults control at the combinational circuit’s inputs.

KEYWORDS

combinational circuit, self-checking structure, unidirectional, symmetrical, asymmetrical errors, symmetrically-independent outputs groups.

REFERENCES

  1. Fujiwara, E. (2006), Code Design for Dependable Systems: Theory and Practical Applications, John Wiley & Sons, New Jersey, USA.
    https://doi.org/10.1002/0471792748
  2. Ubar, R., Raik, J. and Vierhaus, H.T. (2011), Design and Test Technology for Dependable Systems-on-Chip (Premier Reference Source), IGI Global, New York, USA.
    https://doi.org/10.4018/978-1-60960-212-3
  3. Göessel, M., Ocheretny, V., Sogomonyan, E. and Marienfeld, D. (2008), New Methods of Concurrent Checking: Edition 1, Springer Science+Business Media B.V, Dordrecht, Netherland.
  4. Nicolaidis, M. and Zorian, Y. (1998), “On-Line Testing for VLSI – А Compendium of Approaches”, Journal of Electronic Testing: Theory and Applications, no. 12, pp. 7-20. DOI: 10.1023/A:1008244815697.
    https://doi.org/10.1023/A:1008244815697
  5. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Yefanov, D.V. (2015) “Classification of errors in information vectors of systematic codes”, Izvestiya Vysshikh Uchebnykh Zavedeniy. Priborostroenie, Vol. 58, no. 5, pp. 333-343. DOI 10.17586/0021-3454-2015-58-5-333-343.
    https://doi.org/10.17586/0021-3454-2015-58-5-333-343
  6. Dmitriyev, V.V., Yefanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2018), “Sum Codes with Efficient Detection of Twofold Errors for Organization of Concurrent Error-Detection Systems of Logical Devices”, Avtomatika i telemekhanika, no. 4, pp. 105-122.
    https://doi.org/10.1134/S0005117918040082
  7. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Yefanov, D.V. and Dmitriyev, V.V. (2017), “New structures of the concurrent error detection systems for logic circuits”, Avtomatika i telemekhanika, no. 2, pp. 127-143.
    https://doi.org/10.1134/S0005117917020096
  8. Ghosh, S., Basu, S. and Touba, N.A. (2005), “Synthesis of Low Power CED Circuits Based on Parity Codes”, Proceeding of the 23rd IEEE VLSI Test Symposium (VTS'05), pp. 315-320.
    https://doi.org/10.1109/VTS.2005.80
  9. Freiman, C.V. (1962), “Optimal Error Detection Codes for Completely Asymmetric Binary Channels”, Ibid, Vol. 5, Issue. 1, pp. 64-71. DOI: 1016/S0019-9958(62)90223-1.
    https://doi.org/10.1016/S0019-9958(62)90223-1
  10. Berger, J.M. (1961), “A Note on Error Detection Codes for Asymmetric Channels”, Information and Control, Vol. 4, Issue. 1, pp. 68-73. DOI: 10.1016/S0019-9958(61)80037-5.
    https://doi.org/10.1016/S0019-9958(61)80037-5
  11. Piestrak, S.J. (1995), Design of Self-Testing Checkers for Unidirectional Error Detecting Codes, Oficyna Wydawnicza Politechniki Wrocłavskiej, Wrocław, Poland.
  12. Das, D., Touba, N.A., Seuring, and Gossel, M. (2000), “Low Cost Concurrent Error Detection Based on Modulo Weight-Based Codes”, Proceeding of IEEE 6th International On-Line Testing Workshop (IOLTW), Spain, Palma de Mallorca, July 3-5, 2000, pp. 171-176. DOI: 10.1109/OLT.2000.856633.
    https://doi.org/10.1109/OLT.2000.856633
  13. Efanov, D., Sapozhnikov, V. and Sapozhnikov, Vl. (2017) “Generalized Algorithm of Building Summation Codes for the Tasks of Technical Diagnostics of Discrete Systems”, Proceeding of the 15th IEEE East-West Design & Test Symposium (EWDTS`2017), Novi Sad, Serbia, September 29 - October 2, 2017, pp. 365-371. DOI: 1109/EWDTS. 2017.8110126.
    https://doi.org/10.1109/EWDTS.2017.8110126
  14. Sogomonyan, E.S. and Slabakov, E.V. (1989), Samoproveryayemyye ustroystva i otkazoustoychivyye sistemy [Self-checking devices and failover systems], Radio & Svjaz`, Moscow, USSR.
    https://doi.org/10.1007/BF00971975
  15. Gessel', M. and Sogomonyan, Ye.S. (1992), Design of self-testing and self-checking combinational circuits with weakly independent outputs”, Avtomatika i telemekhanika, no. 8, pp. 150-
  16. Sogomonyan, E.S. and Gössel, M. (1993) “Design of Self-Testing and On-Line Fault Detection Combinational Circuits with Weakly Independent Outputs”, Journal of Electronic Testing: Theory and Applications, Vol. 4, Issue. 4, pp. 267-281. DOI:10.1007/
  17. Busaba, F.Y. and Lala, P.K. (1994), “Self-Checking Combinational Circuit Design for Single and Unidirectional Multibit Errors”, Journal of Electronic Testing: Theory and Applications, Issue. 5, pp. 19-28. DOI: 1007/BF00971960.
    https://doi.org/10.1007/BF00971960
  18. Morosow, A., Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Goessel, M. (1998), “Self-Checking Combinational Circuits with Unidirectionally Independent Outputs”, VLSI Design, Vol. 5, Issue. 4, pp. 333-345. DOI: 10.1155/1998/20389.
    https://doi.org/10.1155/1998/20389
  19. Yefanov, D.V., Sapozhnikov, V.V., Sapozhnikov, Vl.V. (2018), “Synthesis of Self-Checking Combinational Devices Based on Allocating Special Groups of Outputs”, Avtomatika i telemekhanika, no. 9, pp. 79-94.
    https://doi.org/10.1134/S0005117918090060
  20. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Efanov, D.V. (2018), Kody Khemminga v sistemakh funktsional'nogo kontrolya logicheskikh ustroystv [Hamming codes in concurrent error detection systems of logic devices], Nauka, St. Petersburg, Russia.
  21. Das, D. and Touba, N.A. (1999), “Synthesis of Circuits with Low-Cost Concurrent Error Detection Based on Bose-Lin Codes”, Journal of Electronic Testing: Theory and Applications, Vol. 15, Issue. 1-2, pp. 145-155. DOI: 10.1023/A:1008344603814.
    https://doi.org/10.1023/A:1008344603814
  22. Yefanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2015), “Applications of Modular Summation Codes to Concurrent Error Detection Systems for Combinational Boolean Circuits”, Avtomatika i telemekhanika, no. 10, pp. 152-169.
    https://doi.org/10.1134/S0005117915100112
  23. Prokof'yev, A.A., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (1984), Logical method for electrical mounting testing”, Elektronnoje Modelirovanije, Vol. 6, no. 4, pp. 55-59.
  24. Sapozhnikov, V., Sapozhnikov, Vl. and Efanov, D. (2017), “Search Algorithm for Fully Tested Elements in Combinational Circuits, Controlled on the Basis of Berger Codes”, Proceeding of the 15th IEEE East-West Design & Test Symposium (EWDTS`2017), Novi Sad, Serbia, September 29 - October 2, 2017, pp. 99-108. DOI: 10.1109/EWDTS. 2017.8110085.
    https://doi.org/10.1109/EWDTS.2017.8110085
  25. Yefanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2017), “Conditions for Detecting a Logical Element Fault in a Combination Device under Concurrent Checking Based on Berger`s Code”, Avtomatika i telemekhanika, no. 5, pp. 152-165.
    https://doi.org/10.1134/S0005117917050113

Full text: PDF