G.A. Kravtsov, V.V.Levitin,
V.I. Koshel‘, V.V. Nikitchenko, A.N. Primushko

Èlektron. model. 2019, 41(5):35-58


The article provides an overview of the fundamental foundations for building strong artificial intelligence.The article provides an overview of the fundamental foundations for building strong artificial intelligence.The validity of the hypotheses put proved by the method of field experiments isshown. It is argued that in order to construct a mathematical theory of strong artificial intelligence(AI) it is necessary to go over to the von Neumann-Bernays-Godel system of axioms and then thepossibility of using semantic structures represented by computer ontologies as algebraic structuresopens up. For the correct use of ontologies in artificial intelligence systems, it is necessarythat ontologies along the division planes are metric spaces.


artificial intelligence, axiom system, human brain, semantics, measure of difference,artificial intelligence, axiom system, human brain, semantics, measure of difference,internal model of the world, adaptability.


1. Bostrom, N. (2016), Artificial Intelligence. Stages. Threats. Strategies, Mann.
2. Searle, J. and Minds. (1980), “Brains, and programs”, Behavioral and brain sciences, Vol. 3, no. 3, pp. 417-424.
3. O’Konnor, J. and Makdermott, I. (2014), The Art of Systems Thinking: Essential knowledge of systems and a creative approach to problem solving, Alpina Publisher.
4. Harnad, S. (2006), Searle’s Chinese Room Argument, Encyclopedia of Philosophy, Vol. 2, pp. 239-242.
5. Likopastov, Y. (2014), “Turing test passed”, Gadjets news, available at: (accessed September 6, 2019).
6. (2014), “λ-calculus. Part One: History and Theory”, available at: (accessed September 6, 2019).
7. Landin, J.P. (1964), “The mechanical evaluation of expressions”, The Computer Journal. British Computer Society. Vol. 6, no. 4, pp. 308-320.
8. Barendregt, X. (1985), Lambda-ischisleniye. Yego sintaksis i semantika [Lambda calculus. Its syntax and semantics], Mir.
9. MacLane, C. (2004), Kategorii dlya rabotayushchego matematika [Categories for working math], Fizmatlit, Moscow, Russia.
10. Milewski, B. (2014), “Category Theory for Programmers”, available at: (accessed
September 6, 2019).
11. Eagleman, D. (2015), The brain: the story of you, Canongate Books, 257 p.
12. Kahneman, D. (2011), Thinking, Fast and Slow, Farrar, Straus and Giroux, 528 p.
13. Kurchanov N.A. (2012), Povedeniye: evolyutsionnyy podkhod. Uchebnoye posobiye [Behavior:an evolutionary approach. Tutorial], SpetsLit, St. Petersburg, Russia.
14. Redozubov, A. (2012), “Artificial Intelligence as a Set of Issues”, available at: (accessed September 6, 2019).
15. Kravtsov, G.A. (2016), “Classification Computing Model”, Elektronnoye modelirovaniye, Vol. 38, no. 1, pp. 73-87.
16. Kravtsov, G.A., Koshel’, V.I, Dolgorukov, A.V. and Turcan, V.V. (2018), “Classification Classification Learning Model”, Elektronnoye modelirovaniye, Vol. 39, no. 3, pp. 63-76.
17. Semkin, B.I. and Gorshkov, M.V. (2008), “Axiomatic introduction of measures of similarity, difference, compatibility and dependence for components of biodiversity”, Bulletin of the Pacific State Economic University, no. 4, pp. 31-46.
18. Joe, Kim., Muller, C.W. and Kleck, W.R. (1989), Faktornyy, diskriminantnyy i klasternyy analiz [Factor, discriminant and cluster analysis], Finansy i statistika.
19. Jaccard, P. (1901), “Distribution of alpine flora in the Dranses Basin and in a few neighboring regions”, Bulletin of the Vaudoise Society of Natural Sciences, Vol. 37, no. 140, pp. 241-272, DOI : 10.5169/seals-266440.
20. Levandowsky, M. andWinter, D. (1971), “Distance between Sets’’, Nature, Vol. 234, pp. 34-35, DOI : 10.1038/234034a0.
21. Sörensen, T. (1948), “A method of establishing groups of equal amplitude in plant sociology based on similarity of species content”, Biologiske Skrifter, Vol. 5, no. 4, pp. 1-34.
22. Kulczynski, S. (1927), “Plant complexes in the Pieniny”, International Newsletter of the Polish Academy of Sciences and Letters, Class of Mathematical and Natural Sciences, Vol. 2, pp. 57-203.
23. Sokal, R.R. and Sneath, P.H.A. (1963), Principles of numerical taxonomy, New York : W.H. Freeman & Co.
24. Szymkiewicz, D. (1934), A statistical contribution to floristic geography, Acta Soc. Bot. Polon, Vol. 34, no. 3, pp. 249-265.
25. Simpson, G. G. (1947), “Holarctic mammalian faunas and continental relationship during the Cenozoic’’, Bull. Geol. Sci. America, Vol. 58, no. 2, pp. 613-688.[613:HMFACR]2.0.CO;2
26. Braun-Blanquet, J. (1951), Plant Sociology Fundamentals of Vegetation Science, Springer-Verlag Wien, Berlin, Germany, DOI : 10.1007/978-3-7091-4078-9.
27. Ochiai, A. (1957), “Zoogeographical studies on the solenoid fishes found Japan and its neighboring regions-II”, Bull. Jap. Soc. sci. Fish, Vol. 22, no. 9, pp. 526-530, DOI : 10.2331/suisan.22.526.
28. Sëmkin, B.I. (1979), Ekvivalentnost’ mer blizosti i iyerarkhicheskaya klassifikatsiya mnogomernykh dannykh [Equivalence of proximity measures and hierarchical classification of multidimensional data], Iyerarkhicheskiye klassifikatsionnyye postroyeniya v geograficheskoy ekologii i sistematike, pp. 97-112.
29. Kravtsov G.A. and Koshel’ V.I. (2017), “Classification calculations. Classification classification”, Elektronnoe modelirovaniye, Vol. 39, no. 5, pp. 59-69.
30. Ivlev, YU.V. (2008), Logika [Logics], Prospekt, Moscow, Russia.
31. “Letters !: Rules of division in logic and errors in division”, available at: (accessed September 6, 2019).

Full text: PDF