I.L. Ivanov, A.A. Martynyuk

Èlektron. model. 2017, 39(6):15-32


The paper deals with the global chaos synchronization in two identical single-machine-infinitebus (SMIB) power systems under impulsive perturbations. Sufficient conditions of exponential synchronization via controller with delay are established by the Lyapunov-Razumikhin stability analysis of impulsive differential equations with delay. Obtained results are confirmed by numerical methods. Chaotic behavior of the SMIB power system under impulsive perturbations has also been studied.


power system, SMIB, Lyapunov-Razumikhin method, impulsive systems with delay, chaos synchronization.


1. Bainov, D.D., Lakshmikanthan, V. and Simenov, P.S. (1989), Theory of impulsive differential equations, World Scientific, Singapore.
2. Samoilenko, A.M. and Perestyuk, N.A. (1987), Differentsialnye uravneniya s impulsnym vozdeistviem [Impulse differential equations], Vyshcha shkola, Kiev, Ukraine.
3. Halanai, A. and Wexler, D. (1971), Kachestvennaya teoriya impulsnykh system [Qualitative theory of impulse systems], Mir, Moscow, Russia.
4. Tsypkin, Ya.Z. (1958), Teoriya impulsnykh system [Theory of impulse systems], Fizmatgiz, Moscow, Russia.
5. Ivanov, I.L. (2014), “Delayed control of power system under pulse perturbations”, Elektronnoe modelirovanie , Vol. 36, no. 5, pp. 17-26.
6. Ivanov, I.L. and Martynyuk, A.A. (2015), “Stability results for delay power system under impulse perturbations”, Communications in applied analysis, Vol. 15, no. 2, pp. 275-286.
7. Ivanov, I.L. (2016), “Regulation of power systems under impulsive perturbations”, Elektronnoe modelirovanie, Vol. 38, no. 6, pp. 3-14.
8. Wang, L., Sun, Y., Li, L. and Liu, Y.N. (2014), “Impulsive control of stochastic interconnected power systems based on TS fuzzy model”, Transactions IEEE 33rd Chinese Control Conference (CCC), pp. 4500-4505.
9. Burtsev, A.V., Nevretdinov, Yu.M. and Smirnov, A.A. (2014), “Laboratory experimental studies of impulse characteristics of a power transformer”, Trudy Kolskogo nauchnogo tsentra RAN, Energetika, Iss. 7(26), pp. 35-40.
10. Berger, K., Anderson, R.Â. and Kroninger, H. (1975), “Parameters of lightning flashes”, Electra, no. 41, pp. 23-37.
11. Chiang, H.D., Liu, C.W., Varaiya,P.P., Wu, F. F. and Lauby, M. G. (1993), “Chaos in a simple power system”, IEEE Transactions on Power Systems, Vol. 8, no. 4, pp. 1407-1417.
12. Chen, H.-K., Lin, T.-N. and Chen, J.-H. (2005), “Dynamic analysis, controlling chaos and chaotification of a SMIB power system”, Chaos, Solitons & Fractals, Vol. 24, no. 5, pp. 1307-1315.
13. Lin, J.-S., Yang, Y.-S., Hung, M.-L., Liao, T.-L. and Yan, J.-J. (2010), “Observer design for chaos synchronization of time-delayed power systems”, Proceedings of the World Academy of Science, Engineering and Technology, Vol. 4, no. 5, pp. 498-501.
14. Harb, A.M. and Abdel-Jabbar, N. (2003), “Controlling Hopf bifurcation and chaos in a small power system”, Chaos, Solitons & Fractals, Vol. 18, no. 5, pp. 1055-1063.
15. Shahverdiev, E.M., Hashimova, L.H. and Hashimova, N.T. (2008), “Chaos synchronization in some power systems”, Chaos, Solitons Fractals, Vol. 37, no. 3, pp. 829-834.
16. Lin, Q. and Wu, X. (2011), “The sufficient criteria for global synchronization of chaotic power systems under linear state-error feedback control”, Nonlinear Analysis: Real World Applications, Vol. 12, no. 3, pp. 1500-1509.
17. Jiang, G. and Lu, Q. (2007), “Impulsive state feedback control of a predator–prey model”, Journal of Computational and Applied Mathematics, Vol. 200, no. 1, pp. 193-207.
18. Jiang, J., Lu, Q. and Qian, L. (2007), “Chaos and its control in an impulsive differential system”, Chaos, Solitons and Fractals, Vol. 34, no. 4, pp. 1135-1147.
19. Lakmeche, A. and Arino, O. (2000), “Bifurcation of nontrival periodic solutions of impulsive differential equations arising chemotherapeutic treatment”, Dynamics of Continuous, Discrete and Impulsive System, Vol. 7, pp. 265-287.
20. Tang, S.Y. and Chen, L.S. (2002), “Density-dependent birth rate, birth pulses and their population dynamic consequences”, J. Math. Biol., Vol. 44, pp. 185-199.
21. Ivanov, I.L. (2015), “An approach for stability analysis of impulsive systems with delay”, Matematychni problemy mekhaniky ta compyuternoi tekhniky: Zbirnyk prats Institutu Matematyky NAN Ukrainy, Vol. 12, no. 5, pp. 30-38.
22. Slynko, V. (2005), “On stability conditions for linear impulsive systems with delay”, Prikladnaya mekhanika, Vol. 41, no. 6, pp. 697-703.
23. Gantmakher, F.R. (1966), Teoriya matrits [The theory of matrices], Nauka, Moscow, USSR.
24. Jordan, D.W. and Smith, P. (2007), Nonlinear ordinary differential equations: Introduction for scientists and engineers (4th Edition), Oxford, Oxford University Press, UK.

Full text: PDF (in Russian)