THE PRINCIPLES AND METHODS OF ECOLOGICAL SAFETY MANAGEMENT THROUGH THE DATA OF AIR MONITORING NETWORK ANALYSIS

A.V. Iatsyshyn, Yu. G. Kutsan, V.O. Artemchuk, I.P. Kameneva, O.O. Popov, V.O. Kovach

Èlektron. model. 2019, 41(4):85-101

ABSTRACT

The problem of environmental safety management is considered in the context of reducing negativeThe problem of environmental safety management is considered in the context of reducing negativeenvironmental impacts. A generalized structural model of ecological safety managementprocess is proposed, which is based on the methods and technologies of the intellectual analysisof monitoring data. The possibilities of adaptation and improvement of some of the mostwell-known algorithms for data mining: C4.5, K-means, SVM, kNN, naive Bayes classifier,Apriori algorithm for data analysis of atmospheric air monitoring network data were explored.Examples of practical use of separate methods for the detection of dangerous situations are given.

KEYWORDS

ecological safety, security management, intelligence analysis, monitoring data,ecological safety, security management, intelligence analysis, monitoring data,atmospheric air.

REFERENCES

1. Pampuro, V.I. (2012), Optimal'noye upravleniye bezopasnost'yu ekologicheski opasnykh ob"yektov [Optimal safety management of environmentally hazardous facilities], Naukova Dumka, Kiev, Ukraine.
2. Cleland, D. and King, V. (1974), Sistemnyy analiz i tselevoye upravleniye [System Analysis and Target Management], Sov. Radio, Moscow, SSSR.
3. Yatsyshyn, A.V. (2013), “Comprehensive assessment and management of environmental safety in air pollution”, Abstract of Doct. Sci. (Tech.) dissertation, 21.06.01, SI «Institute of Environmental Geochemistry of NAS of Ukraine», Kyiv, Ukraine.
4. Ivashhuk, O.A. and Konstantinov I.S. (2009), “Guarding of adaptive management by ecological safety of an industrial and transport complex”, Upravleniye bol'shimi sistemami, no. 25, pp. 96-115.
5. Kapralov, E.G. (2008), Geoinformatika: uchebnik dlya vuzov [Geoinformatics: a textbook for universities], Akademiya, Moscow, Russia.
6. Kameneva, I.P., Artemchuk, V.O. and Yatsyshyn, A.V. (2016), “Models of representation and data transformation in the problems of environmental monitoring in urban areas”, Elektronnoe modelirovanie, Vol. 38, no. 2, pp. 49-66.
https://doi.org/10.15407/emodel.38.02.049
7. Artemchuk, V.O. Kameneva, I.P. and Yatsyshyn, A.V. (2017), “Specificity of the application of cognitive analysis of information in the tasks of ensuring environmental safety”, Elektronnoe modelirovanie, Vol. 39, no. 6, pp. 107-124.
https://doi.org/10.15407/emodel.39.06.107
8. Chen, C., Chuang, C. and Jiang, J. (2013), «Ecological Monitoring Using Wireless Sensor Networks-Overview, Challenges, and Opportunities», Advancement in Sensing Technology. Smart Sensors, Measurement and Instrumentation, Vol. 1, pp. 1-21.
https://doi.org/10.1007/978-3-642-32180-1_1
9. Dias, D. and Tchepel, O. (2014), “Modelling of human exposure to air pollution in the urban environment: a GPS-based approach”, Environmental Science and Pollution Research 21.5, pp. 3558-3571.
https://doi.org/10.1007/s11356-013-2277-6
10. Meier, F. et al. (2015), “Challenges and benefits from crowdsourced atmospheric data for urban climate research using Berlin, Germany, as testbed”, Proceedings of the 9th International Conference on Urban Climate.
11. Peters, D. et al.(2014), “Harnessing the power of big data: infusing the scientific method with machine learning to transform ecology”, Ecosphere, Vol. 5, no. 6, pp. 1-15.
https://doi.org/10.1890/ES13-00359.1
12. “Data Mining Algorithms”, available at: https://tproger.ru/translations/top-10-data-mining-algorithms/ (accessed June 23, 2019).
13. “Decision trees”, available at: https://basegroup.ru/community/articles/math-c45-part1 (accessed June 23, 2019).
14. Zgurovsky, M.Z., Boldak, A.A. and Yefremov, K.V. (2013), “Intelligent analysis and systemic adjustment of scientific data in interdisciplinary research”, Kibernetika i sistemnyy analiz, Vol. 49, no. 4, pp. 62-75.
https://doi.org/10.1007/s10559-013-9539-7
15. “Clustering: k-means method”, available at: http://statistica.ru/theory/klasterizatsiyametod-k-srednikh/ (accessed Mart 23, 2019).
16. Shitikov, V.K., Mastitsky, S.E. “Classification, regression, Data Mining algorithms using R”, available at: https://github.com/ranalytics/data-mining (accessed February 2, 2019).
17. Artemchuk, V.O. and Yatsyshyn, A.V. (2018), “Intelligent analysis of data in the system of monitoring of atmospheric air”, Modelyuvannya ta Informatsiyni tehnologiyi, Vol. 82, pp. 48-52.
18. Artemchuk, V.O., Bilan, T.R., Blinov, I.V. et al. (2017), Theoretical and applied bases of economic, ecological and technological functioning of energy objects. Kyiv, Ukraine: TOV «Nash format», (in Ukrainian).
19. Kameneva, I.P., Popov, O.O., Yatsyshyn, A.V. and Artemchuk, V.O. (2009), “Methods for determining environmental risk factor for atmospheric”, Modelyuvannya ta Informatsiyni tehnologiyi, Vol. 53, pp. 23-32.
20. Yatsyshyn, A.V., Kameneva, I.P., Artemchuk, V.A. and Popov, A.A. (2012), “Methods and technologies for risk analysis for health based on monitoring data”, Conference proceedings of the 4 th International scientific conference “MODELING-2012”, 2012, Kyiv, Ukraine, pp. 470-473.
21. Ashouri, Milad et al. (2018), “Development of building energy saving advisory: A data mining approach”, Energy and Buildings, Vol. 172, pp. 139-151.
https://doi.org/10.1016/j.enbuild.2018.04.052
22. Orange, available at: http://orange.biolab.si/download/ (accessed February 2, 2019).
23. “Automated surveillance posts”, available at: https://krmisto.gov.ua/ua/rc/ecomon.html (accessed February 2, 2019).

Full text: PDF