COMBINED MODEL FOR DESCRIPTION OF ELECTRICAL CONDUCTIVITY OF THE SYSTEMS BASED ON POLYETHERS AND CARBON NANOTUBES

E.A. Lysenkov, V.V. Klepko

Èlektron. model. 2018, 38(6):107-118
https://doi.org/10.15407/emodel.38.06.107

ABSTRACT

The combined theoretical model of electrical conductivity of polymeric nanocomposites is offered and experimental results for the systems polyether–carbon nanotubes (CNT) are described using proposed model. The combined model takes into account contributions from a polymeric matrix, interface layers on a polymer–CNT border, direct contacts between CNT and tunneling to the general conductivity. The proposed model well describes an experiment in the wide interval of CNT concentrations and allows obtaining exhaustive information about the processes of charges transfer in the system.

KEYWORDS

percolation behavior, polymer nanocomposites, electrical conductivity, carbon nanotubes.

REFERENCES

1. Vargas-Bernal, R., Herrera-Pårez, G., Calixto-Olalde, M.E. and Tecpoyotl-Torres, M. (2013), “Analysis of DC electrical conductivity models of carbon nanotube-polymer composites with potential application to nanometric electronic devices”, J. of Electric. and Comput. Engin., Vol. 2013, pp. 1-14.
https://doi.org/10.1155/2013/179538
2. Taherian, R. (2014), “Development of an equation to model electrical conductivity of polymer-based carbon nanocomposites”, ECS J. of Solid State Sci. Technol., Vol. 3, pp. M26-M38.
3. Lysenkov, E.A. and Klepko, V.V. (2016), “Modelling of electrical conductivity of the systems based on polyethers and carbon nanotubes”, Elektronnoe modelirovanie, Vol. 38, no. 1, pp. 115-126.
4. Lysenkov, E.A. and Klepko, V.V. (2016), “Analysis of percolation behavior of electrical conductivity of the systems based on polyethers and carbon nanotubes”, Journal of Nanoand Electronic Physics, Vol. 8, no. 1, pp. 01017-1-01017-7.
5. Spitalsky, Z., Tasis, D., Papagelis, K. and Galiotisa, C. (2010), “Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties”, Progress in Polym. Sci., Vol. 35, pp. 357-401.
https://doi.org/10.1016/j.progpolymsci.2009.09.003
6. Bauhofer, W. and Kovacs, J.Z. (2009), “A review and analysis of electrical percolation in carbon nanotubes polymer composites”, Compos. Sci. Technol., Vol. 69, ðð. 1486-1498.
7. Eletskii, A.V.,Knizhnik, A.A., Potapkin, B.V. andKenny Kh.M. (2015), “Electrical characteristics of carbon nanotube doped composites”, Uspekhi fizicheskikh nauk,Vol. 185, pp. 225--270.
8. Du, J-H., Bai, J. and Cheng, H-M. (2007), “The present status and key problems of carbon nanotube based polymer composites”, eXPRESS Polymer Letters, Vol. 1, pp. 253-273.
https://doi.org/10.3144/expresspolymlett.2007.39
9. Lysenkov, E., Melnyk, I., Bulavin, L., Klepko, V. and Lebovka, N. (2015), “Structure of polyglycols doped by nanoparticles with anisotropic shape”, Eds L. Bulavin and N. Lebovka, Physics of Liquid Matter: Modern Problems, Springer Proceedings in Physics, Springer International Publishing, Switherland, pp. 165-198.
https://doi.org/10.1007/978-3-319-20875-6_7
10. Lysenkov, E.A. and Klepko, V.V. (2013), “Features of charge transfer in the polyethylene glycol / carbon nanotubes system”, Journal îf Nano-And Electronic Physics, Vol. 5, no. 3, pp. 03052-1-03052-6.
11. Lysenkov, E.A., Yakovlev, Y.V. and Klepko, V.V. (2013), “Percolative properties of systems based on polypropylene glycol and carbon nanotubes”, Ukr. J. Phys., Vol. 58, no. 4, pp. 378-384.
https://doi.org/10.15407/ujpe58.04.0378
12. Lysenkov, E.A., Klepko, V.V. and Yakovlev, Yu.V. (2016), “Specifics of percolation behavior in the polyether-carbon nanotube systems doped with LiClO4”, Surface Engin. and Appl. Electrochem., Vol. 52, no. 2, pp. 186-192.
https://doi.org/10.3103/S1068375516020071
13. Manilo, M., Lebovka, N. and Barany, S. (2014), “Characterization of the electric double layers of multi-walled carbon nanotubes, laponite and nanotube + laponite hybrids in aqueous suspensions”, Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 462, pp. 211-216.
https://doi.org/10.1016/j.colsurfa.2014.09.006
14. Tomylko, S., Yaroshchuk, O. and Lebovka, N. (2014), “Two-step electrical percolation in nematic liquid crystals filled with multiwalled carbon nanotubes”, Phys. Rev. E., Vol. 92, pp. 12502-1-12502-8.
15. Nettelblad, B., Mårtensson, E.,Önneby, C., Gäfvert, U. and Gustafsson, A. (2003), “Two percolation thresholds due to geometrical effects: experimental and simulated results”, J. Phys. D: Appl. Phys., Vol. 36, no. 4, pp. 399-405.
https://doi.org/10.1088/0022-3727/36/4/312
16. Pang, H., Chen, C., Bao,Yu., Chen, J., Ji, X., Lei, J. and Li, Z.-M. (2012), “Electrically conductive carbon nanotube/ultrahigh molecular weight polyethylene composites with segregated and double percolated structure”, Mater. Lett., Vol. 79, pp. 96-99.
https://doi.org/10.1016/j.matlet.2012.03.111
17. Ambrosetti, G., Grimaldi, C., Balberg, I., Maeder, T., Danani, A. and Ryser, P. (2010), “Solution of the tunneling-percolation problem in the nanocomposite regime”, Phys. Rev. B., Vol. 81, no. 15, pp. 155434-1-155434-12.
18. Zhu, L.-J., Cai, W.-Z., Gu, B.-Q. and Tu, S.-T. (2009), “Tunneling percolation model of the electrical conductivity of particulate nanocomposites”, Modern Physics Letters B., Vol. 23, no. 10, pp. 1273-1279.
https://doi.org/10.1142/S0217984909019399
19. Lisetski, L.N., Fedoryako, A.P., Samoilov, A.N., Minenko, S.S., Soskin, M.S. and Lebovka, N.I. (2014), “Optical transmission of nematic liquid crystal 5CB doped by single-walled and multi-walled carbon nanotubes”, Eur. Phys. J. E., Vol. 37, pp. 68-1-68-7.

Full text: PDF (in Russian)