I.L. Ivanov, A.A. Martynyuk

Èlektron. model. 2018, 38(6):03-14


The paper deals with the delayed control of a power system under the pulse perturbations. Suffcient conditions of asymptotic stabilization of this system by the delayed proportional differentional controller are obtained via developed approach, based on direct Lyapunov method and Razumikhin technique. Obtained analytical results are represented as a system of nonlinear algebraic inequalities with a set of free parameters.


power system, Lyapunov stability, Razumikhin approach, time delay, pulse effects, control.


1. Kundur, P. (1994), Power system stability and sontrol, McGraw-Hill, USA
2. Pavella, M., Ernst, D. and Ruiz-Vega, D. (2000), Transient stability of power systems: a unified approach to assessment and control, Kluver Academic Publisher, Boston, USA.
3. Chang, H.D., Chu, C.C. and Cauley, G. (1995), Direct stability analysis of electric power systems using energy functions: Theory, applications, and perspective, Proceedings of the IEEE, Vol. 13, pp. 1497-1529.
4. Gruyich, L.T., Martynyuk, A.A. and Ribbens-Pavella, M. (1984), Ustoichivost krupnomasshtabnyh system pri strukturnykh vozmushcheniyakh [Large-scale systems stability under structural perturbations], Naukova dumka, Kiev, Ukraine.
5. Zribi, M., Mahmoud, M.S., Karkoub, M. and Lie, T.T. (2000), H -controllers for linearised time-delay power systems, IEE Proceedings-Generation, Transmission and Distribution, Vol. 147, no. 6, pp. 401-408.
6. Chaudhuri, B., Majumder, R. and Pal, B.C. (2004), “Wide-area measurement-based stabilizing control of power system considering signal transmission delay”, IEEE Transactions on Power Systems, Vol. 19 no. 4, pp. 1971-1979.
7. Yao, W., Jiang, L., Wu, Q.H., Wen, J.Y. and Cheng, S.J. (2011), “Delay-dependent stability analysis of the power system with a wide-area damping controller embedded”, IEEE Transactions on Power Systems, Vol. 26 no. 1, pp. 233-240.
8. Wu, H., Ni, H. and Heydt, G.T. (2002), “The impact of time delay on robust control design in power systems”, Power Engineering Society Winter Meeting, IEEE, 2002, New York, pp. 1511-1516.
9. Milano, F. and Anghel, M. (2012), “Impact of time delays on power system stability”, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 59 no. 4, pp. 889-900.
10. Jia, H., Yu, X., Yu, Y. and Wang, C. (2008), “Power system small signal stability region with time delay”, International Journal of Electrical Power&Energy Systems, Vol. 30, no. 1, pp. 16-22.
11. Berger, K., Anderson, R.Â. and Kroninger, H. (1975), “Parameters of lightning flashes”, Electra, no. 41, pp. 23-37.
12. Martynyuk, A.A. and Ivanov, I.L. (2013), “On the connective stability of three-machine power system under impulsive perturbations”, Dopovidi NAN Ukrainy, no. 7, pp. 64-71.
13. Ivanov, I.L. (2012), “Stability of a model of a power system with delay and pulse effects”, Analitychna mekhanika ta ii zastosuvannya. Zbirnyk prats Institutu Matematyky NAN Ukrainy, Vol. 9, no. 1, pp. 114-127.
14. Ivanov, I.L. (2014), “Regulation of power systems under impulsive perturbations”, Elektronnoe modelirovanie, Vol. 36, no. 5, pp. 17-26.
15. Ivanov, I.L. (2015), “An approach for stability analysis of impulsive systems with delay”, Mathematychni problemy mekhaniky i obchyslyuvalnoi tekhniky. Zbirnyk prats Institutu Matematyky NAN Ukrainy, Vol. 12, no. 5, pp. 30-38.
16. Gantmakher, F.R. (1966), Teoriya matrits [The theory of matrices], Nauka, Moscow, USSR.

Full text: PDF (in Russian)