Yu.A. Klevtsov

Èlektron. model. 2017, 39(5):21-36


Based on the theory of finite integral transformations the author has considered a class of models—transfer functions of the objects, which description requires partial differential equations. The rules establishing the correspondence between operations in the space-time and spectral domain are presented. The examples of modeling the objects with distributed parameters are considered.


finite integral transformations, systems with distributed parameters, transfer function, mathematical modeling.


1. Solodovnikov, V.V. and Semenov, V.V. (1974), Spektralnaya teoriya nestatsionarnykh sistem upravleniya [Spectral theory of non-stationary control systems], Nauka, Moscow, USSR.
2. Kraskevich, V.Ye. and Klevtsov, Yu.A. (1981), “Spectral method of structural-parametric identification of objects with distributed parameters”, Vestnik KPI, Ser. Tekhnicheskaya kibernetika, Vol. 5, pp. 10-12.
3. Kraskevich, V.Ye. and Klevtsov, Yu.A. (1981), “Spectral representation of linear objects with distributed parameters”, Kibernetika na morskom transporte, Vol. 10, pp. 87-94. 
4. Klevtsov, Yu.A. (1988), “Spectral description of objects with distributed parameters”, Elektronnoe modelirovanie, Vol. 10, no. 3, pp. 27-31.
5. Klevtsov, Yu.A. (2001), “Algorithm for modeling a boundary value problem of the third kind”, Elektronnoe modelirovanie, Vol. 23, no. 3, pp. 40-46.
6. Klevtsov, Yu.A. (2012), “Modeling multidimensional objects with distributed parameters”, Elektronnoe modelirovanie, Vol. 34, no. 5, pp. 20-40.
7. Lancaster, P. (1978), Teoriya matrits [Matrix theory], Nauka, Moscow, USSR.
8. Farlou, S. (1985), Uravneniya s chastnymi proizvodnymi dlya nauchnykh rabotnikov i inzhenerov [Partial differential equations for scientists and engineers], Mir, Moscow, USSR.
9. Klevtsov, Yu.A. (2016), “Structural transformations of models of systems with distributed parameters”, Elektronnoe modelirovanie, Vol. 38, no. 1, pp. 35-46.
10. Butkovskiy, A.G. (1979), Kharakteristiki sistem s raspredelennymi parametrami [Characteristics of distributed systems], Nauka, Moscow, USSR.
11. Klevtsov, Yu.A. (2011), “Modeling the object with distributed parameters defined on a nonrectangular domain”, Elektronnoe modelirovanie, Vol. 33, no. 1, pp. 47-55.

Full text: PDF (in Russian)