COMPUTER MODELING OF OPTIMAL CONTROL OF WELD POOL POSITION DURING ROOT JOINTS MIG/MAG WELDING

V.V. Dolinenko, V.O. Kolyada, E.V. Shapovalov, T.G. Scuba

Èlektron. model. 2018, 38(3):33-46
https://doi.org/10.15407/emodel.38.03.033

ABSTRACT

The paper proposes a method of synthesis and computer modeling of the optimal state controller for automatic control system of MIG/MAG (arc welding in shielding gases) orbital welding root passes. We consider the problem of optimal control of root pass formation with feedback from video-pyrometric sensor, which uses a video of the weld pool in its infrared radiation. Modeling of the system of the weld pool optimal position control at welding with torch transverse oscillations of 1 Hz and 3 Hz has been made.

KEYWORDS

MIG/MAG welding with transverse electrode oscillations, the root seam, weld pool, the optimal state feedback control.

REFERENCES

1. Belfor, M.G. and Paton, B.E. (1974), Oborudovanie dlya dugovoi svarki i shlakovoy svarki i naplavki [Equipment for arc and slag welding and surfacing], Vysshaya shkola, Moscow, Russia.
2. Vornovitsky, I.N., Kucherova, M.I., Rantsev, A.A. and Chislov, S.A. (1999), “Welding of root weld joints of pipes without backing rings”, Svarochnoe proizvodstvo, no. 12, pp. 30-32.
3. Poloskov, S.I., Bukarov, V.A. and Ischenko, Y.S. (2003), “Features management of root formation during orbital welding of pipes”, Svarochnoe proizvodstvo, no. 4, pp. 3-10.
4. Erokhin, A.A. and Ischenko, Y.S. (1967), “Some regularities of formation when melted the orbital welding of pipes”, Svarochnoe proizvodstvo, no. 4, pp. 16-18.
5. GOST 16037-80 (1980), Soyedineniya svarnye stalnykh truboprovodov. Osnovnye tipy, strukturnye elementy i razmery [Welded joints of steel pipelines. Basic types and sizes of structural elements], Izd-vo standartov, Moscow, Russia.
6. Poloskov, S.I., Ischenko, Y.S. and Bukarov, V.A. (2003), “Analysis of the factors determining the formation of the weld pool in orbital welding of pipes (review)”, Svarochnoe proizvodstvo, no. 2, pp. 11-19.
7. Davydov, V.A., Kolupaev, Y.F. and Sidorov, A.V. (1988), “Control forms the back of the root pass welding joints with groove”, Svarochnoe proizvodstvo, no. 11, pp. 9-11. 
8. Chernyshev, G.G. and Akulov, A.I. (1965), “Considerations for selection of welding in CO2 root weld pipe joints turning”, Avtomaticheskaya svarka, no. 12, pp. 73.
9. Timchenko, V.A., Dubovetsky, S.V., Gursky, K.P., Fedotov, P.F. and Pavlyuk, Y.V. (1989), “Influence of oscillations trajectory of the electrode to form a seam at robotic arc welding in carbon dioxide”, Avtomaticheskaya svarka, no. 2, pp. 73.
10. Doumanidis, C.C. and Hardt, D.E. (1990), “Simultaneous in-process control of heat-affected zone and cooling rate during arc welding”, Welding Journal, Vol. 69, May 1990, pp. 186s-196s.
11. Shan-Ben Chen and Jing Wu (2008), “Intelligentized methodology for arc welding dynamical processes: visual information acquiring, knowledge modeling and intelligent control”, Springer Publishing Company, Incorporated, Germany, USA.
12. Bae, K.Y., Lee, T.H. and Ahn, K.C. (2002), “An optical sensing system for seam tracking and weld pool control in gas metal arc welding of steel pipe”, Journal of Materials Processing Technology, Vol. 120, pp. 458-465.
https://doi.org/10.1016/S0924-0136(01)01216-X
13. Huang, J., Huang, J., Zou, Y., Jiang, L., Xue, L. and Huang, M. (2008), “Study on a pipe welding robot based on laser vision sensing”, Proceedings of IEEE Conference on Robotics, Automation and Mechatronics”, Chengdu, September 21-24, 2008, pp. 720-723.
https://doi.org/10.1109/RAMECH.2008.4681506
14. Lobanov, L.M., Shapovalov, E.V. and Kolyada, V.A. (2014), “Use of modern information technology to meet the challenges of automation of technological processes”, Tekhnicheskaya diagnostika i nerazrushayuschiy control, no. 4. pp. 52-56.
15. Dolinenko, V.V., Kolyada, V.A., Scuba, T.G. and Shapovalov, E.V. (2010), “Optimum control of weld bead formation”, Avtomaticheskaya svarka, no. 2, pp. 23-29. 
16. Kim, D.P. (2004), Teoriya avtomaticheskogo upravleniya. Vol. 2. Mnogomernye, nelineinye, optimalnye i adaptivnye sistemy: Uchebnoye posobiye [Automatic control Theory. Vol. 2. Multidimensional, nonlinear, optimal and adaptive systems: Manual], Fizmatlit, Moscow, Russia.
17. Beiker, Dzh. and Greivs-Morris, P. (1986), Approksimatsii Pade [Pade approximations], Mir, Moscow, Russia.
18. Perelmuter, V.M. (2008), Pakety rasshireniya MATLAB – Control System Toolbox and Robust Control Toolbox [Extension packages MATLAB: Control System Toolbox and Robust Control Toolbox], Solomon Press, Moscow, Russia.
19. Kvakernak, H. and Sivan, R. (1977), Lineynye optimalnye sistemy kontrolya [Linear optimal control systems], Translated from English, Mir, Moscow. Russia.
20. Braison, A. and Yu-Shi, Ho (1972), Prikladnaya teoriya optimalnogo upravleniya [Applied theory of optimal control],Translated from English, Mir, Moscow, Russia.

Full text: PDF (in Russian)