THEORETICAL STUDIES OF ELEMENTARY CONVECTION CELL IN THE HORIZONTAL LAYER OF VISCOUS INCOMPRESSIBLE LIQUID WITH RIGID AND MIXED BOUNDARY CONDITIONS

O.L. Andreeva, B.V. Borts, A.O. Kostikov, V.I. Tkachenko

Èlektron. model. 2017, 39(2):35-46
https://doi.org/10.15407/emodel.39.02.035

ABSTRACT

Results of theoretical investigations of formation of convective cells with mixed boundary conditions in vacuum oil are presented. For a special case the analytical solutions were obtained for Navier–Stokes equation with rigid boundary conditions. The expressions of distribution for perturbed velocity and temperature in a cylindrical convective cell were obtained. These distributions were compared to similar parameters of free convective cell for the principal mode. It was demonstrated that the diameter of a convective cell is inversely related to the value of minimal wave number of the corresponding boundary value problem, i.e. the diameter of a cell with the mixed boundary conditions is less than the diameter of a cell with free boundary conditions, but it is larger than the diameter of a cell with rigid boundary conditions.

KEYWORDS

elementary convective cell, mixed and rigid boundary conditions, viscous fluid.

REFERENCES

1. Chandrasekhar, S. (1970), Hydrodynamic and hydromagnetic stability, Oxford University Press, Oxford, UK.
2. Neklyudov, I.M., Borts, B.V. and Tkachenko, V.I. (2012), “Applied mechanics”, Proc.KhNU im. V.N. Karazina, Vol. 14(86), no. 2, pp. 29-40.
3. Shchuka, A.A. (2007), Nanoelektronika [Nanoelectronics], Fizmatkniga, Moscow, Russia.
4. Sazhin, B.S. and Reutskiy, V.A. (1990), Sushka i promyvka tekstilnykh materialov: teoriya, raschet protsessov [Drying and washing of textile materials: theory, process analysis], Legprombytizdat, Moscow, Russia.
5. Myuller, G. (1991), Vyraschivanie kristallov iz rasplava. Konvektsiya i neodnorodnosti [Flux growth. Convection and heterogeneities], translated from English by V. Bune, Mir, Moscow, Russia.
6. Rykalin, N.N., Uglov, A.A. and Kokora, A.N. (1975), Lazernaya obrabotka materialov [Laser treatment of materials], Mashinostroenie , Moscow, Russia.
7. Gershuni, G.Z. and Zhukhovitskiy, E.M. (1972), Konvektivnaya ustoychivost neszhimaemoy zhidkosti [Convective stability of incompressible fluid], Nauka, Moscow, Russia.
8. Strutt, J.W. (1916), Lord Ràyleigh, Phil. Mag. , Vol. 32, pp. 529-546.
9. Getling, A.V. (1991), “Formation of spatial structures of convection of Rayleigh-Benar”, UFN, Vol. 161, Iss. 9, pp. 1-80.
10. Bozbey, L.S., Kostikov, A.O. and Tkachenko, V.I. (2014), “Elementary convective cell in the layer of incompressible, viscous liquid and its physical properties”, International conference MSS-14, Mode conversion, coherent structures and turbulence, Space Research Institute, Moscow, pp. 322-328.
11. Bozbiei, L., Borts, B., Kazarinov, Yu., Kostikov, A. and Tkachenko, V. (2015), “Experimental study of liquid movement in free elementary convective cells”, Energetika, – Vol. 61, no. 2, pp. 45-56.
https://doi.org/10.6001/energetika.v61i2.3132
12. Silveston, P.L. (1958), Wärmedurchgang in waagerechten Flüssigkeitsschichten, Forsch. Ing. Wes., Bd. 24, no. 29, pp. 59-69.

Full text: PDF (in Russian)