V.V. Pozhivatenko

Èlektron. model. 2017, 39(1):113-125


First-principal calculations of structural phase transitions essentially underestimate the values of pressure of phase transitions in alkaline-earth metals. Using fitting parameters which are estimated in calculations for calcium and strontium the author has conducted numerical calculations of parameters of phase transitions in superstructures Ca1-xSrx consistent with face-centered cubic—body-centered cubic (FCC — BCC) transition at low pressure, modeled by the supercells containing up to sixteen atoms. Dependence of thermodynamic properties of Ca1-xSrx on concentration of strontium and parameter of smearing has been studied.


structural phase transitions, density functional theory, smearing technique for the states about Fermi level.


1. Winzenick, M. and Holzapfel, W.B. (1996), “Structural study on the high-pressure phase strontium III”, Physical Review B, Vol. 53, no. 5, pp. 2151-2154.
2. Wang, G.M., Papaconstantopoulos, D.A. and Blaisten-Barojas, E. (2003), “Pressure induced transitions in calcium: a tight-binding approach”, J. Phys. Chem. Solids, Vol. 64, no. 2, pp. 185-192.
3. Errea, I. et al. (2008), “Fermi surface nesting and phonon instabilities in simple cubic calcium”, // High Pressure Research, Vol. 28, no. 4, pp. 443-448.
4. Arapan, S., Mao, H.-k. and Ahuja, R. (2008), “Prediction of incommensurate crystal structure in Ca at high pressure”, P. Natl. Acad. Sci. USA, Vol. 105, no. 52, pp. 20627-20630.
5. Gao, G. et al. (2008), “Electronic structures, lattice dynamics, and electron-phonon coupling of simple cubic Ca under pressure”, Solid State Comm., Vol. 146, no. 3-4, pp. 181-185.
6. Qiu, S.I. and Marcus, P.M. (2009), “Phases of Ca from first principles”, J. Phys.: Condens.Matter, Vol. 21, no. 43, pp. 435403-1 – 435403-8.
7. Ishikawa, T. et al. (2010), “Review of high pressure phases of calcium by first-principles calculations”, J. Phys.: Conf. Ser., Vol. 215, pp. 012105-1-012105-6.
8. Oganov, A.R. et al. (2010), “Exotic behavior and crystal structures of calcium under pressure”, P. Natl. Acad. Sci. USA, Vol. 107, no. 17, pp. 7646-7651.
9. Mao, W.L. et al. (2010), “Distortions and stabilization of simple-cubic calcium at high pressure and low temperature”, P. Natl. Acad. Sci. USA, Vol. 107, no. 22, pp. 9965-9968.
10. Liu, Zh.-L. et al. (2011), “Phase transition and thermodynamic properties of Sr under high pressure”, Physica B, Vol. 406, no. 23, pp. 4518-4522.
11. Alcock, C.B. and Itkin, V.P. (1986), “The Ca-Sr (Calcium-Strontium) System”, J. of Phase Equilibria, Vol. 7, no. 5, pp. 455-457.
12. Aljarrah, M. and Medraj, M. (2008), “Thermodynamic modeling of the Mg-Ca, Mg-Sr, Ca-Sr and Mg-Ca-Sr systems using the modified quasi-chemical model”, Calphad, Vol. 32, no. 2, pp. 240-251.
13. Okamoto, H. (2010), “Ca-Sr (Calcium-Strontium)”, J. of Phase Equilibria and Diffusion, Vol. 31, no. 5, p. 491.
14. Maksimov, E.G., Magnitskaya, M.V. and Fortov, V.E. (2005), “Non-simple behavior of simple metals at high pressure”, Uspekhi fizicheskikh nauk, Vol. 175, no. 8, pp. 793-813.
15. Degtyareva, V.F. (2006), “Simple metals at high pressures: the Fermi sphere – Brillouin zone interaction model”, Uspekhi fizicheskikh nauk, Vol. 176, no. 4, pp. 383-402.
16. Hohenberg, P. and Kohn, W. (1964), “Inhomogeneous electron gas”, Physical Review, Vol. 136, no. 3, pp. B864-B871.
17. Weinert, M. and Davenport, J.V. (1992), “Fractional occupations and density-functional energies and forces”, Physical Review B, Vol. 45, no. 23, pp. 13709-13712.
18. Springborg, M., Albers, R.C. and Schmidt, K. (1998), “Fractional occupancies and temperature in electronic-structure calculations”, Physical Review B, Vol. 57, no. 3, pp. 1427- 1435.
19. Methfessel, M. and Paxton, A.T. (1989), “High-precision sampling for Brillouin-zone integration in metals”, Physical Review B, Vol. 40, no. 6, pp. 3616-3621.
20. Pozhivatenko, V.V. (2013), “Calculation of thermodynamic potentials with the inclusion of fractional occupation numbers and investigation of FCC – BCC structural phase transitions in alkaline-earth metals”, Fizika tvyordogo tela, Vol. 55, no. 10, pp. 1879-1886.
21. Perdew, J.P., Burke, K. and Ernzerhof, M. (1996), “Generalized gradient approximation made simple”, Phys. Rev. Lett., Vol. 77, no. 18, pp. 3865-3868.
22. Vanderbilt, D. (1990), “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism”, Physical Review B, Vol. 41, no. 11, pp. 7892-7895.
23. Giannozzi, P. et al. (2009), “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials”, J. Phys.: Condens. Matter, Vol. 21, no. 39, pp. 395502-1-395502-19.
24. Marzari, N., Vanderbilt, D., De Vita, A. and Payne, M.C. (1999), “Thermal contraction and disordering of the Al(100) surface”, Phys. Rev. Lett., Vol. 82, no. 16, pp. 3296-3299.
25. Murnaghan, F.D. (1944), “The compressibility of media under extreme pressures”, P. Natl. Acad. Sci. USA, Vol. 30, no. 9, pp. 244-247.
26. Birch, F. (1947), “Finite elastic strain of cubic crystals”, Physical Review, Vol. 71, no. 11, pp. 809-824.
27. Birch, F. (1978), “Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K”, J. Geophys. Res., Vol. 83, no. B3, pp. 1257-1268.
28. Monkhorst, H.J. and Pack, J.D. (1976), “Special points for Brillouin-zone integrations”, Physical Review B, Vol. 13, no. 12, pp. 5188-5192.

Full text: PDF (in Russian)