THE USE OF NANOELECTROMECHANICAL SYSTEMS TO CREATE SOME INFORMATION MODELS AND SPECIALIZED COMPUTING DEVICES

V.K. Belik

Èlektron. model. 2018, 38(5):61-74
https://doi.org/10.15407/emodel.38.05.061

ABSTRACT

Possible application of resonant nanoelectromechanical systems (NEMS) for creation of some information models and specialized computing devices has been investigated. Namely, they were used for modeling the neurosystem elements and arbitrary systems of linear algebraic equations. The possibility of creating specialized calculators for fast search of numbers in a fixed array for spectral data and signal analysis (Fourier transform) were considered. We have described some characteristic properties of the NEMS.

KEYWORDS

nanoelectromechanical system, resonant four-poles, neuron, axon, matrix structures, oscillations.

REFERENCES

1. Kim, S.J., Lee, J.J., Kang, H.J., Choi, Y.-S. Yu et al. (2012), One electron-based smallest flexible logic cell, Appl. Phys. Lett., Vol. 101, 183101, pp. 1-4.
2. Heun, S. Kim, Hua Qin and Blick, R.H. (2010), Self excitation of nano-mechanical pillar, New Journal of Physics, no. 12, 033008, pp.1-11.
3. Blick, R.H., Hua Qin, Hyun-Seok Kim and Marsland, R. (2007), A nanomechanical computer-exploring new avenues of computing, New Journal of Physics, Vol. 241, no. 9, pp. 1-9.
4. Blick, R. and Marsland, R. (2008), Patent US 2008 / 7,414,437 B1, Nanomechanical computer.
5. Belik, V.K., Klimovskaya, A.I. and Zhuravskaya I.O. (2013), “Nanocomputer: creation prospects. Review”, USiM, no. 5, pp. 65-71.
6. Belik, V.K., Boyun, V.P., Klimovskaya, A.I. and Palagin, A.V. (2014), “Synthesis adder nanocomputer based on resonant electromechanical elements”, USiM, no. 1, pp. 48-56.
7. Palagin, O.V., Boyun, V.P., Kl³movska, A.². et al. (2014), Patent UA ¹107131, “Binary adder”, Bulletin no. 22.
8. Palagin, O.V., Boyun, V.P., Kl³movska, A.². et al. (2014), Patent UA No. 107130, “Method of binary addition / subtraction”, Bulletin no. 22.
9. Scheible, D.V. and Blick, R.H. (2005), Patent US 2005 / 6,946,693 B1, Electromechanical electron transfer devices.
10. Bessonov, L.A. (1964), Teoreticheskie osnovy elektrotekhniki [Theoretical foundations of electrical engineering], Vysshaya shkola, Moscow, USSR.
11. Jensen, K.J., Zettl, A.K., Weldon, J.A. (2010), Patent US 2010/0271003 A1, Nanotube resonator devices.
12. Author’s certificate of the USSR ¹141646 (1961), “Matrix model of a system of linear algebraic equations”, Pukhov, G.E. and Borkowski, B.A., Bull. izobret., no. 19.
13. Gantmakher, F.R. (1988), Teoriya matrits [The theory of matrices], Nauka, Moscow, USSR.
14. Adam, J.D. and Young, R.M. (2007), Patent US 2007 / 7,157,990 B1, Radio frequency device and method using a carbon nanotube array.
15. Ekinci, K.L. (2005), Electromechanical Transducers at the Nanoscale: Actuation and Sensing of Motion in Nanoelectromechanical Systems (NEMS), Nanoelectromechanical systems J. small, no. 8-9, pp. 786 -797.
16. Klimovskaya, A.I., Sarikov, A.V., Pedchenko, Yu.N. et al. (2012), Growth of silicon nanowires suitable for NEM device applications, E-MRS 2012 Spring Meeting, Symposium L, L8P, 43, Ukraine.
17. Pukhov, G.E. and Evdokimov, V.F. (1973), “The sign code and especially its application in non-algorithmic bit machines”, Sbornik trudov seminara, Matematicheskoe modelirovanie i teoriya elektricheskikh tsepei, ed by Pukhov, G.E., Iss. 11, pp. 18-20.

Full text: PDF (in Russian)