O.A. Kravchuk, V.D. Samoilov

Èlektron. model. 2024, 46(2):101-121



The article reveals modern approaches to building a swarm system with an emphasis on the swarm of unmanned aerial vehicles. The main components of the architecture of the swarming system were considered: swarming model, communication network, control system. The difference between the principles of controlling individual UAV and a large group (swarm) of UAVs is considered. The importance and necessity of further development of methods and systems for managing swarm systems is outlined.


unmanned aerial vehicles, swarm system, swarm of unmanned aerial vehicles, swarm intelligence.


  1. Giles, K., & Giammarco, K. (2017). Mission-based architecture for swarm composability (MASC). Procedia Computer Science, 114, 57-
  2. Beni, G., & Wang, J. (1993). Swarm intelligence in cellular robotic systems. In Robots and biological systems: Towards a new bionics? (pp. 703-712). Springer Berlin Heidelberg. 
  3. Kadrovach, B.A. (2003). A communications modeling system for swarm-based sensors [Ph.D. Dissertation, Air Force Institute of Technology, USA]. https://scholar.afit.edu/etd/4130.
  4. Finn, A., & Scheding, S. (2010). Developments and challenges for autonomous unmanned vehicles: A compendium. Springer Berlin Heidelberg. 
  5. Dekker, A. (2008). A taxonomy of network centric warfare architectures. Defence Sciences & Technology Organisation, DSTO Fern Hill, Department of Defence, Canberra ACT 2600, Australia. https://apps.dtic.mil/sti/pdfs/ADA488254.pdf.
  6. Frew, E.W., & Brown, T.X. (2008). Airborne communication networks for small unmanned aircraft systems. Proceedings of the IEEE, 96(12), 2008- 
  7. Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of important issues in UAV communication networks. IEEE Communications Surveys & Tutorials, 18(2), 1123- 
  8. Holland, J.H. (1992). Complex adaptive systems. Daedalus, 121, 17- http://www. jstor.org/stable/20025416.
  9. Yang, X. (2010). Firefly algorithm, lévy flights and global optimization. In M. Bramer, R. Ellis, & M. Petridis (Eds.), Research and development in intelligent systems XXVI (pp. 209-218). Springer. 
  10. Gaudiano, P., Bonabeau, E., & Shargel, B. (2005). Evolving behaviors for a swarm of unmanned air vehicles. In Proceedings 2005 IEEE swarm intelligence symposium (pp. 317-324). 
  11. Maier, M.W. (1996). Architecting Principles for Systems-of-Systems. INCOSE International Symposium, 6(1), 565- 
  12. Dudek, G., Jenkin, M.M., & Milios, E. (1996). A taxonomy for multi-agent robotics. Autonomous robots, 3(4), 375- 
  13. Borshchev, A., & Filippov, A. (2004). From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques, Tools. In Proceedings of the 22nd International Conference of the System Dynamics Society. 25-29 July 2004, Oxford. https://api.semanticscholar.org/CorpusID:6188368
  14. Soysal, O., & Sahin, E. (2005). Probabilistic Aggregation Strategies in Swarm Robotic Systems. In Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005. (pp. 325-332). IEEE. 
  15. Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling swarm robotic systems: A case study in collaborative distributed manipulation. The International Journal of Robotics Research, 23(4), 415-
  16. Parunak, H.V.D. (2003). Making swarming happen. In Conference on swarming and C4ISR: Joint C4ISR decision support center. https://www.abcresearch.org/abc/papers/ pdf.
  17. Weiskopf, F., Gion, T., Elkiss, D., Gilreath, H., Bruzek, J., Bamberger, R., Grossman, K., & Wilkerson, J. (2002). Control of cooperative, autonomous unmanned aerial vehicles. In 1st UAV conference. American Institute of Aeronautics and Astronautics.
  18. Petri, C.A. (1966). Communication with automata (RADC-TR-65-377, Vol. I). Rome Air Development Center, Research and Technology Division, Griffiss Air Force Base, NY, technical report. https://apps.dtic.mil/sti/tr/pdf/AD0630125.pdf.
  19. Zhu, M., & Brooks, R. R. (2009). Comparison of petri net and finite state machine discrete event control of distributed surveillance network. International Journal of Distributed Sensor Networks, 5(5), 480- 
  20. Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1- 
  21. Nicolescu, M.N., & Matarić, M.J. (2002). A hierarchical architecture for behavior-based robots. In Proceedings of the first international joint conference on Autonomous agents and multiagent systems (pp. 227-233). ACM Press. 
  22. Brambilla, M., Pinciroli, C., Birattari, M., & Dorigo, M. (2012). Property-driven design for swarm robotics. In Proc. of the 11th international conference on autonomous agents and multiagent systems (AAMAS 2012) (pp. 139-146). International Foundation for Autonomous Agents and Multiagent Systems. http://www.ifaamas.org/Proceedings/
  23. Buede, D.M. (2009). The engineering design of systems: Models and methods (2nd ed.). John Wiley & Sons, Inc. 
  24. Reynolds, C. (2001, September 6). background and update. https://www.red3d.com/ cwr/boids/.
  25. Corson, M.S., & Macker, J.P. (1999). Mobile Ad Hoc networking (MANET): Routing protocol performance issues and evaluation considerations. RFC, 2501, 1-
  26. Estrin, D., Govindan, R., Heidemann, J., & Kumar, S. (1999). Next century challenges: Scalable coordination in sensor networks. In of the 5th annual ACM/IEEE international conference on mobile computing and networking (pp. 263-270). ACM Press. 
  27. Bekmezci, İ., Sahingoz, O.K., & Temel, Ş. (2013). Flying Ad-Hoc Networks (FANETs): A survey. Ad Hoc Networks, 11(3), 1254- 
  28. Chung, T.H., Clement, M.R., Day, M.A., Jones, K.D., Davis, D., & Jones, M. (2016). Live-fly, large-scale field experimentation for large numbers of fixed-wing UAVs. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 1255-1262). IEEE. 
  29. Cummings, M.L., Bruni, S., Mercier, S., & Mitchell, P. (2007). Automation architecture for single operator, multiple UAV command and control. The International Command and Control Journal, 12, 1- 
  30. Cummings, M.L., Nehme, C.E., Crandall, J., & Mitchell, P. (2007). Predicting operator capacity for supervisory control of multiple UAVs. In J. Chahl, L. Jain, A. Mizutani, & M. Sato-Ilic (Eds.), Innovations in Intelligent Machines - 1 (pp. 11-37). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72696-8_2.
  31. Lewis, M. (2013). Human interaction with multiple remote robots. Reviews of Human Factors and Ergonomics, 9(1), 131- 
  32. Kolling, A., Walker, P., Chakraborty, N., Sycara, K., & Lewis, M. (2016). Human interaction with robot swarms: A survey. IEEE Transactions on Human-Machine Systems, 46(1), 9- 
  33. Meystel, A., Albus, J., Messina, E., Evans, J., Fogel, D., & Hargrove, W. (2000). Measuring performance of systems with autonomy: Metrics for intelligence of constructed systems. National Institute of Standards and Technology. https://www.nist.gov/system/ files/documents/el/isd/ks/White_Paper_PerMIS2000.pdf.
  34. Clough, B.T. (2002). Metrics, schmetrics! How the heck do you determine a UAV’s autonomy anyway? Performance Metrics for Intelligent Systems Workshop. Gaithersburg, MD: Air Force Research Lab, 2002. 
  35. Brown, D.S., Goodrich, M.A., Jung, S.-Y., & Kerman, S.C. (2016). Two invariants of human swarm interaction. Journal of Human-Robot Interaction, 5(1), 1-
  36. Brown, D.S., Kerman, S.C., & Goodrich, M.A. (2014). Human-swarm interactions based on managing attractors. In Proceedings of the 2014 ACM/IEEE international conference on human-robot interaction (pp. 90-97). Association for Computing Machinery. 
  37. Humann, J., Pollard, K.A., Hill, S.G., Ayorinde, O.A., Foots, A.N., & You, S. (2019). Physical robot swarm testbed at ARL: Specifications and experimental design possibilities (ARL-TR-8852). Army Research Laboratory. https://apps.dtic.mil/sti/trecms/pdf/ pdf.
  38. Barber, D., Davis, L., Nicholson, D., Finkelstein, N., & Chen, J.Y. (2008). The mixed initiative experimental (MIX) testbed for human robot interactions with varied levels of automation. Defense Technical Information Center. 
  39. Chen, J.Y.C., & Barnes, M.J. (2014). Human–Agent teaming for multirobot control: A review of human factors issues. IEEE Transactions on Human-Machine Systems, 44(1), 13- 
  40. Barnes, M.J., Chen, J.Y.C., & Jentsch, F. (2015). Designing for mixed-initiative interactions between human and autonomous systems in complex environments. In 2015 IEEE international conference on systems, man and cybernetics (pp. 1386-1390). IEEE. 
  41. Pendleton, B., & Goodrich, M. (2013). Scalable human interaction with robotic swarms. In AIAA Infotech@Aerospace (I@A) Conference. American Institute of Aeronautics and Astronautics.

Full text: PDF