INVESTIGATION OF TEMPERATURE FIELDS IN MICROELECTRONIC DEVICES OF LAYERED STRUCTURE WITH THROUGH INCLUSIONS

V.I. Havrysh, R.B. Tushnytskyy, V.Ya. Krayovskyy, Ye.V. Levus

Èlektron. model. 2017, 39(2):91-102
https://doi.org/10.15407/emodel.39.02.091

ABSTRACT

The paper deals with an axially symmetric boundary value problem of heat conduction for isotropic piecewise-homogeneous layer with a through cylinder-shaped inclusion heated at one of its boundary surfaces by concentrated heat flow. Having expressed the heat conductivity factor for the whole system as an indivisible entity with a help of a unit function, we obtained the heat conduction equation with discontinuous and singular coefficients for the considered structure. Having made piecewise-linear approximation of temperature at the lateral surface of the inclusion and at the surfaces of conjugation of the layer’s elements, and then having applied Hankel’s transformation, and analytical-numerical solution of the problem is obtained. The temperature field in a “layer-inclusion” (the material of layer is silicon, the material of the inclusion is silver) structure has been calculated and analyzed.

KEYWORDS

temperature, isotropic piecewise-homogeneous layer, heat conduction, through foreign inclusion, perfect thermal contact, heat flow.

REFERENCES

1. Carpinteri, A. and Paggi, M. (2008), “Thermoelastic mismatch in nonhomogeneous beams”, J. Eng. Math, Vol. 61, no. 2-4, pp. 371-384.
2. Noda, N. (1991), “Thermal stresses in materials with temperature-dependent properties”, Appl. Mech. Rev., Vol. 44, pp. 383-397.
https://doi.org/10.1115/1.3119511
3. Otao, Y., Tanigawa, O. and Ishimaru, O. (2000), “Optimization of material composition of functionality graded plate for thermal stress relaxation using a genetic algorithm”, J. Therm. Stresses, Vol. 23, pp. 257-271.
https://doi.org/10.1080/014957300280434
4. Tanigawa, Y., Akai, T. and Kawamura, R. (1996), “Transient heat conduction and thermal stress problems of a nonhomogeneous plate with temperature-dependent material properties”, J. Therm. Stresses, Vol. 19, no. 1, pp. 77-102.
https://doi.org/10.1080/01495739608946161
5. Tanigawa, Y. and Otao, Y. (2002), “Transient thermoelastic analysis of functionally graded plate with temperature-dependent material properties taking into account the thermal radiation”, Nihon Kikai Gakkai Nenji Taikai Koen Ronbunshu, Vol. 2, pp. 133-134.
6. Yangian, Xu and Daihui, Tu. (2009), “Analysis of steady thermal stress in a ZrO2/FGM/Ti-6Al-4V composite ECBF plate with temperature-dependent material properties by NFEM”, 2009-WASE Int. Conf. on Informa. Eng., Vol. 2, no. 2, pp. 433-436.
7. Byelyayev, M.M. and Ryadno, O.A. (1992), Matematychni metody teploprovidnosti [Mathematical methods of heat conduction], Vyshcha shkola, Kyiv, Ukraine.
8. Nazarov, S.A., Svyrs, H.Kh. and Slutskiy, A.S. (2009), “A heat conduction problem for thin plate with contrast road-shaped inclusions”, Vestnik Sankt-Peterburgskogo universiteta, Ser. 1: Matematika, mekhanika, astronomiya, no. 4, pp. 44-54.
9. Nemyrovskyy, Yu.V. and Yankovskyy, A.P. (2008), “Solution of steady-state problem of heat conduction of layered anisotropic non-homogeneous plates by means of initial functional method”, Matematychni metody ta fizyko-mekhanichni polya, Vol. 51, no. 2, pp. 222- 238.
10. Havrysh, V.I. and Kosach, A.I. (2012), “Boundary-value problem of heat conduction for a piecewise homogeneous with foreign inclusion”, Materials Science,Vol. 47, no. 6, pp. 773-782.
https://doi.org/10.1007/s11003-012-9455-4
11. Havrysh, V.I. and Fedasyuk, D.V. (2012), Modelyuvannya temperaturnykh rezhymiv u kuskovo-odnoridnykh strukturakh [Modeling of temperature conditions in piecewise-homogeneous structures], Vydavnytstvo Natsionalnoho universytetu “Lvivska politekhnika”, Lviv, Ukraine.
12. Havrysh, V.I. (2015), “Nonlineare boundary-value problem of heat conduction for a layered plate with”, Materials Science, Vol. 51, no. 3, pp. 331-339.
https://doi.org/10.1007/s11003-015-9846-4
13. Havrysh, V.I. (2015), “Modeling of temperature regimes in non-homogenious elements of electronic devices with through foreign inclusions”, Elektronnoe modelirovanie, Vol. 37, no. 4, pp. 109-118.
14. Havrysh, V.I. (2016), “Investigation of temperature fields in a thermosensitive layer with a through inclusion”, Fizyko-khimichna mekhanika materialiv, Vol. 52, no. 4, pp. 63-68.
15. Kolyano, Yu.M. (1992), Metody teploprovodnosti i termouprugosti neodnorodnogo tela [Methods of heat conduction and thermoelasticity of inhomogeneous body], Naukova dumka, Kiev, Ukraine.
16. Podstrigach, Ya.S. and Lomakin, V.A. and Kolyano, Yu.M. (1984), Termouprugost tel neodnorodnoi struktury [Thermoelasticity of bodies with inhomogeneous structure], Nauka, Moscow, Russia.
17. Korn, G. and Korn, T. (1977), Spravochnik po matematike dlja nauchnykh rabotnikov i inzhenerov [Reference book for scientific workers and engineers], Nauka, Moscow, Russia.

Full text: PDF (in Russian)