S.D. Vynnychuk, Dr Sc. (Eng.),
Pukhov Institute for Problems in Electrical Engineering, NAS of Ukraine, 15 General Naumov St, Kyiv, 03164, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
A.A. Shestakov, Cand. Sc. (Eng.),  A.A. Chyrva
State enterprise Antonov, 1 Acad.Tupolev St, Kyiv, 04128, Ukraine,
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.; This email address is being protected from spambots. You need JavaScript enabled to view it.).

Èlektron. model. 2018, 40(4):65-82


The influence of parameters of the model of thermal and hydraulic processes in a plate crossflow heat exchanger (HE) based on the analogy between thermal and hydraulic resistances is considered. The model parameters are determined experimentally. It is shown that it is possible to form a hydraulic processes model from the general model of thermal and hydraulic processes in each of lines separately. It greatly simplifies experimental studies in a wide range of the Reynolds coefficients. It is possible to determine some parameters needed to calculate the pressure drops on the heat exchanger lines on its basis. An algorithm for determining the model`s parameters that define the correspondence bet- ween the specific hydraulic resistance coefficients of the heat exchanger channels and the number of NTU transfer units is presented, It is possible to determine the efficiency coefficient of the heat exchanger and the temperatures at the line exits, based on the information above.


air conditioning system, heat exchanger, hydraulic and thermal processes, mathematical model, parameter identification.


  1. Kondrasñhenko, Ya., Vynnychuk, S.D. and Fedorov, M.Yu.  (1990), Modelirovanie gazovykh i zhidkostnykh raspredelitelnykh system [Modeling of gas and liquid distribution systems], Naukova dumka, Kyiv, USSR.
  2. Vynnychuk, D. (2006), “Methods and algorithms for solving the problems of analysis, de- sign and regulation of flows in the hydraulic distribution systems”, Dr Sc. (Tech.) thesis, 01.05.02, Pukhov Institute for Modeling in Energy Engineering NAS of Ukraine, Kyiv, Ukraine.
  3. Keis, M. and London, A.L. (1967), Kompaktnye teploobmenniki [Compact heat exchan- gers], Energiya, Moscow, USSR.
  4. Rohsenow, M. (1998), Handbook of heat transfer, 3rd Ed, McGraw Hill1, New York, USA.
  5. Lienhard, John IV and Lienhard, John H. V (2005), A heat transfer textbook. 3rded, Phlogiston Press, Cambridge, MA, UK.
  6. Cabezas-Gomez, , Navarro, H.A. and Saiz-Jabardo, J.M. (2015), Thermal Performance Modeling of Cross-Flow Heat Exchangers.
  7. Ramesh, Shah and Dusan, P. Sekulic (2003), Fundamentals of Heat Exchanger Design, John Willey and Sons.
  8. Petukhov, S. (1987), Spravochnik po teploobmennikam: T. 1 [Reference book on heat exchangers: T. 2], Translated from Engl. Ed by. B.S. Petukhov, V.K. Shikov, Energoato- mizdat, Moscow, USSR.
  9. Petukhov, S. (1987), Spravochnik po teploobmennikam: T. 2 [Reference book on heat exchangers, Vol. 2], Transl. from Engl. Ed by B.S. Petukhov, V.K. Shikov, Energoato- mizdat, Moscow, USSR.
  10. Kondraschenko, Ya. and Samoilov, V.D. (1987), Avtomatizatsiya modelirovaniya slozh- nykh teploenergeticheskikh ustanovok [Automation of modeling of complex heat power plants], Naukova dumka, Kyiv, USSR.
  11. Hauzen, (1981), Teplootdacha pri protivotoke, pryamotoke i perekrestnom toke [Convec- tive heat transfer under countercurrent, parallel and cross current], Transl. from German, Energoizdat, Moscow, USSR.
  12. Chyrva, A. (2014), “Modeling of nonstationary thermal processes in plate heat exchangers with allowance for external flow about”, Elektronnoe modelirovanie, Vol. 36, no. 6, pp. 109- 118.
  13. Bukhmirov, V., Rakutina, D.V., Solnyshkova, Yu.S. and Prorokova, M.V. (2013), Teplo- voi raschet rekuperativnogo teploobmennogo apparata [Thermal calculation of recuperative heat exchanger], Ivanovskii gosudarstvennyi energeticheskii universitet imeni V.I. Lenina, Ivanovo, Russia.
  14. Vynnychuk, S.D. (2001), “Modeling of processes in a heat exchanger at the small number of exsperimental data”,  Zbirnyk  naukovykh  prats Pukhov ²PME NAN Ukrainy, Iss. 13, pp. 86-91.
  15. Chilton, H. and Colburn, A.P. (1934), Mass transfer (absorbtion) coefficients, Ind. Eng. Chem., no. 26, pp. 1184-1195.
  16. Idelchik, E. (1992), Gidravlicheskie soprotivleniya, Izd. 3, pererab i dopoln. [Hydraulic resistances. Ed. 3, remade and added], Mashinostroenie, Moscow, Russia.
  17. Abramovich, G.N. (1969), Prikladnaya gazovaya dinamika, Izd. 3, pererab. [Applied gas dynamics, Ed. 3, remade], Nauka, Moscow, USSR.

Full text: PDF