ESTIMATION OF ENERGY EFFICIENCY OF PULSED HIGH VOLTAGE GLOW DISCHARGE ELECTRON SOURCES WITH ALLOWANCE FOR THE PROCESSES ON ELECTRODES AND PARAMETERS OF ANODE PLASMA

I.V. Melnyk

Èlektron. model. 2018, 38(1):03-18
https://doi.org/10.15407/emodel.38.01.003

ABSTRACT

Methods of simulation of energy efficiency of pulsed electron sources of high voltage glow discharge are considered in the article. The proposed methods are based on the complex analysis of physical processes, taking place in the region of cathode potential drop and in the region of anode plasma of high voltage discharge. The obtained simulation results show, that energy efficiency of pulsed glow discharge electron sources depended on the parameters of additional discharge and
on relative control pulse duration ratio. With using suitable parameters of additional discharge the energy efficiency may exceed 90%.

KEYWORDS

electron-beam technologies, electron source, high voltage glow discharge, pulsed operation, energy efficiency.

REFERENCES

1. Ladokhin, S.V., Levitskiy, N.I., Chernyavsky, V.B. et al. (2007), Elektronno-luchevaya plavka v liteynom proizvodstve [Electron-beam melting in foundry], Stal, Kiev, Ukraine. 
2. Grechanyuk, M.I., Melnyk, A.G., Grechanyuk, I.M. et al. (2014), “Modern electron beam technologies and equipment for melting and physical vapor deposition of different materials”, Elektrotekhnika i Elektronika (E+E), Vol. 49, no. 5-6, pp. 115-121.
3. Mattausch, G., Zimmermann, B., Fietzke, F. et al. (2014), “Gas discharge electron sources – proven and novel tools for thin-film technologies”, Elektrotekhnika i Elektronika (E+E), Vol. 49, no. 5-6, pp. 183-195.
4. Feinaeugle, P., Mattausch, G., Schmidt, S. and Roegner, F.H. (2011), “A new generation of plasma-based electron beam sources with high power density as a novel tool for high-rate PVD”, Society of Vacuum Coaters, 54th Annual Technical Conference Proceedings, Chicago, 2011, pp. 202-209.
5. Yarmolich, D., Nozar, P., Gleizer, S. et al. (2011), “Characterization of deposited films and the electron beam generated in the pulsed plasma deposition gun”, Japanese Journal of Applied Physics, Vol. 50, 08JD03. 
6. Mattausch, G., Scheffel, B., Zywitzki, O. et al. (2012), “Technologies and tools for the plasma-activated EB high-rate deposition of zirconia”, Elektrotekhnika i Elektronika (E+E), Vol. 47, no. 5-6, pp. 152-158.
7. Melnyk, I.V. (2013), “Generalized methods of simulation of high voltage glow discharge triode electron sources”, Elektronnoe modelirovanie, Vol. 35, no. 4, pp. 93-107.
8. Denbnovetsky, S.V., Melnyk, V.I., Melnyk, I.V. and Tugay, B.A. (2003), “Model of control of glow discharge electron gun current for microelectronics production applications”, Proceedings of SPIE. Sixth International Conference on Material Science and Material Properties for Infrared Optoelectronics, Vol. 5065, pp. 64-76.
https://doi.org/10.1117/12.502174
9. Shiller, S., Geisig, U. and Panzer, S. (1980), Elektronno-luchevaya tekhnologiya [Electron-beam technology], Energiya, Moscow, Russia.
10. Rykalin, N.N., Zuev, I.V. and Uglov, A.A. (1978), Osnovy elektronno-luchevoi obrabotki materialov [Foundations of electron-beam treatment of materials], Mashinostroenie, Moscow, Russia.
11. Grechanyuk, N., Kucherenko, P., Grechanyuk, I. and Shpack, P. (2006), “Modern technologies and equipment for obtaining new materials and coatings”, Elektrotekhnika i Elektronika (E+E), Vol. 41, no. 5-6, pp. 122-128.
12. Pinto, T., Buxton, A., Neailey, K. and Barnes, S. (2014) “Surface engineer improvements and opportunities with electron beams”, Elektrotekhnika i Elektronika (E+E), Vol. 49, no. 5-6, pp. 221-225.
13. Melnyk, I.V. (2013), “Estimation of time of increasing of high voltage glow discharge electron current in the triode electrode system under supply of control impulse”, Izvestiya vuzov. Radioelektronika, Vol. 56, no. 12, pp. 51-61.
14. Melnyk, I.V. (2014), “Simulation of time of current increasing in impulse triode high voltage glow discharge electron guns”, Elektrotekhnika i Elektronika (E+E), Vol. 49, no. 5-6, pp. 254-258.
15. Melnyk, I.V. and Tugay, S.B. (2013), “Analytical calculation of plasma boundary position in high voltage glow discharge under the lighting of additional discharge”, Izvestiya vuzov. Radioelektronika, Vol. 55, no. 11, pp. 50-59.
16. Novikov, A.A. (1983), Istochniki elektronov vysokovoltnogo tleyuschego razryada s anodnoy plasmoy [High voltage glow discharge electron sources with anode plasma], Energoatomizdat, Moscow, Russia.
17. Zavialov, M.A., Kreyndel, Yu.E., Novikov, A.A. and Shanturin, L.P. (1989), Plasmennye processy v tekhnologicheskikh elektronnykh pushkakh [Plasma processes in technological electron guns], Atomizdat, Moscow, Russia.
18. Granovskiy, V.L. (1952), Elektricheskiy tok v gazakh. Tom 1. Obschie voprosy elektrodinamiki gazov [Electric current in gases. Vol. 1. General problems of gas electrodynamics], Gosudarstvennoe izdatelstvo fiziko-matematicheskoy literatury, Moscow, Leningrad, Russia.
19. Raizer, Yu.P. (1987), Fizika gazovogo razryada [Physics of gas discharge], Nauka, Moscow, Russia.

Full text: PDF (in Russian)