# MATHEMATICAL MODELS OF MAIN UNITS AND UNITS OF AUTOMATED STABILIZATION INSTRUMENT COMPLEX

O.M.Bezvesilna, V.D.Samoylov, M.V.Ilchenko

Èlektron. model. 2021, 43(5):108-121
https://doi.org/10.15407/emodel.43.05.108

### ABSTRACT

This work presents the developed mathematical models of the main components and units that are part of the stabilizer: control panel, gyrotachometer GT46, position sensor, control unit, etc. Mathematical models of the armament unit and turret with gearbox and motor are obtained. A mathematical model of analog and digital control path of the horizontal guidance channel is obtained; vertical guidance channel; results of mathematical modeling of control modes: for vertical channel, for horizontal channel. Mathematical models have been developed, which are used in modeling the stabilizer control modes, as well as in the study of changes in the circuit-technical solution of the weapon stabilizer in order to increase its accuracy. The reliability of the obtained results was confirmed by the results of experimental testing.

### KEYWORDS

stabilization complex, mathematical model, control panel, gyrotachometer, position sensor, modulator.

### REFERENCES

1. Eliseev, A.D. (2011), “Investigation of the high-speed drive of horizontal guidance of the stabilizer of tank armament with a static converter”, Oboronnaya tekhnika, Vol. 8, pp. 24-29.
2. Eliseev, A.D. (2012), “Mathematical model of the static converter of the stabilizer of tank armament as a nonlinear pulse system”, Voprosy oboronnoy tekhniki. Series IX, Vol. 6, no 258.
3. Eliseev, A.D. (2008), “Modernization of the drive of horizontal guidance of the stabilizer of tank armament”, Tekhnologiya. Bezopasnost'. Upravleniye. Materialy ÍÍÍ nauchno-tekhnicheskoy konferentsii aspirantov i molodykh uchenykh. V trekh chastyakh. Chast 1 [Weapons. Technology. Security. Management. Proceedings of the III scientific and technical conference of graduate students and young scientists. In three parts. Part 1], pp. 157–161.
4. Veselov, V.A. (2003), Giroskopicheskiye izmeritelnyye pribory i ustroystva [Gyroscopic measuring instruments and devices], Baltic State Technical University.
5. Bezvesilna, O.M. (2020), “Devising and Introducing a Procedure for Measuring a dynamic Stabilization error in Weapon stabilizers”, Skhidno-Yevropeysʹkyy zhurnal peredovykh tekhnolohiy, Vol. 1/9, no 103, pp. 39-45.
https://doi.org/10.15587/1729-4061.2020.196086
6. Bezvesilna, O.M., Kvasnikov, V.P., Tsiruk, V.G. and Chikovani, V.V. (2014), Systemy navedennya ta stabilizatsiyi ozbroyennya [Armament guidance and stabilization systems], ZHDTU, Zhytomyr, Ukraine.
7. Bezvesilna, O.M. (2016), “Piezoelectric Gravimeter of the Aviation Gravimetric System”, Springer International Publishing Switzerland Journal. Challeges in Automation, Mobile Robotics and Measurement Techniques. Advances in Intelligent Systems and Computing, Vol. 10, pp. 753-755.
https://doi.org/10.1007/978-3-319-29357-8_65
8. Bezvesilna, O.M. “Two-channel MEMS gravimeter for the automated aircraft gravimetric system”, Systems, Control and Information Technology, pp. 29.
9. Bezvesilna, O.M. (2016), “Simulation of influence of perturbation parameters of the new dual-channel capacitive MEMS gravimeter performance”, Skhidno-Yevropeysʹkyy zhurnal peredovykh tekhnolohiy, Vol. 6/7, no 84, pp. 50-57.
https://doi.org/10.15587/1729-4061.2016.85463
10. Bezvesilna, O.M. (2017), “Introducing The Principle of Constructing an Aviation Gravimetric System With Any Type of Gravimeter”, Skhidno-Yevropeysʹkyy zhurnal peredovykh tekhnolohiy, №1/7, no 85, pp. 45-56.
https://doi.org/10.15587/1729-4061.2017.92941
11. Terekhin, V.V. (2004), Osnovy modelirovaniya v MATLAB. Ch. 2. Simulink [Fundamentals of modeling in MATLAB. Part 2. Simulink], RIO NFI Kem GU, Novokuznetsk, Russia.
12. Vasiliev, V.V. (2008), Matematicheskoye i kompyuternoye modelirovaniye protsessov i sistem v srede MATLAB/SIMULINK [Mathematical and computer modeling of processes and systems in the environment MATLAB / SIMULINK], National Aviation University, Kyiv, Ukraine.
13. Buslenko, N.G. (1978), Modelirovaniye slozhnykh sistem [Modeling of complex systems], Nauka, Moscow, Russia.
14. Sovetov, B.Ya. (2001), Modelirovaniye sistem. Uchebnik dlya VUZov [Systems modeling. Textbook for universities], Vysshaya shkola, Moscow, Russia.
15. Egorenko,L. (1994), Osnovy matematicheskogo modelirovaniya. Postroyeniye i analiz modeley s primerami na yazyke Matlab [Fundamentals of mathematical modeling Construction and analysis of models with examples in the Matlab language], BSTU, Saint Petersburg, Russia.
16. Kochergin, V.V. (1988), Sledyashchiye sistemy s dvigatelem postoyannogo toka [Tracking systems with DC motor], Energoatomizdat, Saint Petersburg, USSR.
17. Kopylov, I.P. (1994), Matematicheskoye modelirovaniye elektricheskikh mashin [Mathematical modeling of electric machines], Vysshaya shkola, Moscow, Russia.
18. Semyonov, A.S. (2015), “Mathematical modeling of DC motor operation modes in MATLAB medium”, Fundamentalnyye issledovaniya, Vol, 10, no 3, pp. 523-528.
19. Besekersky, V.A. (1975), Teoriya sistem avtomaticheskogo regulirovaniya [Theory of automatic control systems], Nauka, Moscow, Russia.
20. Samarskiy,A. (2005), Matematicheskoye modelirovaniye: Idei. Metody. Primery [Mathematical modeling: Ideas. Methods. Examples], Fizmatlit, Moscow, Russia.
21. Sharma, D.N. (2002), Uravneniya v chastnykh proizvodnykh dlya inzhenerov [Equations in partial derivatives for engineers], Tekhnosfera, Moscow, Russia.
22. Hanukaev, Y.I. (2002), “About quaternions. Finite displacements of a rigid body and a point”, Electronic journal “Issledovano v Rossii", pp. 338–346, available at: http: //zhurnal.ape.relarn.ru/articles/2002/033.pdf.
23. Meleshko, V.V. (2011), Metodicheskiye ukazaniya k domashnim zadaniyam po kursu "Teoriya i raschet priborov i sistem" [Methodical instructions for homework on the course "Theory and calculation of devices and systems"], NTUU "KPI", Kyiv, Ukraine.
24. Bezvesilna, O.M. and Ilchenko, M.V. (2020), Metody ta zasoby pidvyshchennya tochnistnykh kharakterystyk pryladovoyi systemy vymiryuvannya mekhanichnykh parametriv ta stabilizatsiyi [Methods and means of increasing the accuracy characteristics of the instrument system for measuring mechanical parameters and stabilization], KPI im. Ihorya Sikorskoho, Kyiv, Ukraine.Received 19.04.21.

Full text: PDF