Yu.A. Klevtsov 

Èlektron. model. 2020, 42(3):13-27


Based on the spectral theory of non-stationary control systems, the problem of modeling elliptic objects described by linear partial differential equations is considered. The boundary-value problems of Dirichlet, Neumann, and Robin are solved. Simulation examples explaining the application of the method are given. The concept of the transfer function of an object with distributed parameters is introduced.


mathematical modeling, spectral theory, objects with distributed parameters, transmission function, boundary value problems.


  1. Solodovnikov, V.V. and Semenov, V.V. (1974), Spektralnaya teoriya nestatsionarnyih sistem upravleniya [The Spectral Theory of Non-Stationary Control Systems], Nauka, Moscow, Russia.
  2. Klevtsov, Yu.A. (1988), “Spectral Description of Objects with Distributed Parameters”, Electronnoe modelirovanie, Vol. 10, no. 3, pp. 27-31.
  3. Klevtsov, Yu.A. (2001), “Algorithm for modeling a boundary value problem of the third kind”, Electronnoe modelirovanie, Vol. 23, no. 3, pp. 40–46.
  4. Klevtsov, Yu.A. (2011), “Modeling an object with distributed parameters defined on a nonrectangular domain”, Electronnoe modelirovanie, Vol. 33, no. 1, pp. 47 – 55.
  5. Kraskevitch, V.Ye. and Klevtsov, Yu.A. (1981), “Spectral method of structural - parametric identification of objects with distributed parameters”, Vestn. Kiev. Politekhn. In-ta. Ser. Tekhnicheskaya kibernetika, Vol. 5, pp. 10 – 12.
  6. Klevtsov, Yu.A. (2012), “Modeling multidimensional objects with distributed parameters”, Electronnoe modelirovanie, Vol. 34, no. 5, pp. 20 – 40.
  7. Klevtsov, Yu.A. (2016), “Structural transformations of models of systems with distributed parameters”, Electronnoe modelirovanie, Vol. 38, no. 1, pp. 35 – 46.
  8. Klevtsov, Yu.A. Modelirovanie obektov s raspredelennymi parametrami. Spektralnyj metod [Modeling objects with distributed parameters. Spectral method], Rusajns, Moscow, Russia.
  9. Lankaster P. Teoriya matric. [ Matrix theory], Nauka, Moscow, Russia.
  10. Bellman R. Vvedenie v teoriyu matricz. [Introduction to matrix theory], Nauka, Moscow, Russia.

Full text: PDF