SIMULATION AND ANALYSIS OF THE COMPLEX MOVEMENT OF AN AUTONOMOUS UNMANNED UNDERWATER VEHICLE

S.O. Gurynenko, N.I. Bouraou, V.O. Surgok

Èlektron. model. 2023, 45(3):81-91

https://doi.org/10.15407/emodel.45.03.081

ABSTRACT

Ensuring autonomy, maneuverability and organization of movement control along complex trajectories of a maneuverable multi-purpose autonomous unmanned underwater vehicle (AUUV) is a complex scientific research and engineering task, for the solution of which it is necessary to know the behavior of the vehicle in the environment and the influence of the environment on the dynamics of the vehicle. Plots of the distribution of speed, pressure and kinetic energy of turbulence during the complex movement of the AUUV were obtained, in accordance with the chosen trajectories. Simulation and numerical modeling of AUUV under complex motion was carried out. The obtained results were compared with the results of rectilinear movement. showed that the construction of the ABPA model is acceptable both for straight-line movement and for movement along complex trajectories. A comparative analysis of the obtained values of speed, pressure and kinetic energy of turbulence shows the ability of the developed model of the device to perform quick maneuvers in limited areas (turning around, avoiding obstacles, etc.). The selected and designed ABPA model is suitable for further research in order to develop an automatic control system for a maneuverable multi-purpose AUUV.

KEYWORDS

Autonomous unmanned under water vehicle, computer modeling, numerical study, computational hydrodynamics, complex dynamics, program trajectories.

REFERENCES

  1. Aras, M.S.M., Zhe, K.L., Aripin, M.K., Chaing, T.P., Shah, H.N.M., Khamis, A. & Rashid, M.Z.A. (2019). Design analysis and modelling of autonomous underwater vehicle (AUV) using CAD. Indian J. Geo-Marine Sci., vol. 48, pp. 1081–1090, 2019.
  2. I. Bouraou, S.M. Velychko & S.O. Gurynenko, “Dynamics simulation of autonomous unmanned underwater vehicle in simple motion”, KPI Science News, no. 3, pp. 64–73, 2021. doi: 10.20535/kpisn.2021.3.243586.
  3. Wang, Z.X. Wu, H.J. Dong, M. Tan & J.Z. Yu, “Development and control of underwater gliding robots: A review”, IEEE/CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1543–1560, Sept. 2022. doi:
    https://doi.org/10.1109/JAS.2022.105671
  4. I. Bouraou, L.L. Yatsko, M.D. Rasulov & V.S. Bobrik, (2017) “Review of the state of modern autonomous unmanned underwater vehicles,” Bull. Eng. Academy Ukraine, no. 4, pp. 12–17.
  5. Gurynenko S.O. Organizaciya system keruvannya suchasnyh bezpilotnyh pidvodnyh aparativ: tezy dop. na XIV Vseukr. nauk.-prakt. konf. studentiv, aspirantiv ta molodyh vchenyh “POGLYAD U MAIBUTNYE PRYLADOBUDUVANNYA”, Kyiv, 2021, pp. 34-37
  6. A. Wahed & M.R. Arshad, “Modeling of torpedo-shaped micro autonomous underwater vehicle,” in 10th Int. Conf. Robotics, Vision, Signal Processing Power Applications, Singapore, 2019, pp. 457–463. doi: 
    https://doi.org/10.1007/978-981-13-6447-1_58
  7. Alam, K., Ray, T., & Anavatti, S. G. (2015). Design optimization of an unmanned underwater vehicle using low-and high-fidelity models. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(11), 2794-2808.
    https://doi.org/10.1109/TSMC.2015.2390592
  8. Du X., Wang H., Hao C. & Li X. (2014). Analysis of hydrodynamic characteristics of unmanned underwater vehicle moving close to the sea bottom. Defence Technology, 10(1), 76–81. doi:
    https://doi.org/10.1016/j.dt.2014.01.007
  9. Lombard, M. (2013). SolidWorks 2013 bible. John Wiley & Sons.
  10. Bhat & I. Stenius, “Hydrobatics: a review of trends, challenges and opportunities for efficient and agile under actuated AUVs”, 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), 1-8. doi: 
    https://doi.org/10.1109/AUV.2018.8729805
  11. Bhat, I. Stenius & T. Miao, “Real-time flight simulation of hydrobatic AUVs over the full 00 - 3600 envelope”, IEEE Journal of Oceanic Engineering, vol. 46, No. 4, 2021, 1114-1131. doi: 
    https://doi.org/10.1109/JOE.2021.3076178
  12. ANSYS Fluid Flow Available: https://www.ansys.com/products/fluids.
  13. Surgok V.O. “Metodyka modeliuvannya skladnogo ruhu obiektu v seredpovyschi ANSYS FLUENT”, Efektyvnist ta avtomatyzaciya ingenernyh rishen u pryladobuduvanni: praci XVIII Vseukrainskoi naukovo-praktychnoi konferencii studentiv, aspirantiv ta molodyh uchenyh, Kyiv, 2022, pp. 34-36.
  14. ANSYS Fluent UDF Manual, Available: http://www.pmt.usp.br/academic/martoran/notasmodelosgrad/ANSYS%20Fluent %20UDF%20Manual.pdf
  15. Unmanned Free Submersibles/Ageev M.D., Kasatkin B.A., Kiseliov L.V. et al. L: Sudostroenie, 1981.—224 p.
  16. Sivuhin D.V. Obshii kurs fiziki. Tom I. Mehanika., M: Nauka, 1974, — 350 p.
  17. Safari F., Rafeeyan M. & Danesh M. (2022). Estimation of hydrodynamic coefficients and simplification of the depth model of an AUV using CFD and sensitivity analysis. Ocean Engineering, 263, 112369. 
    https://doi.org/10.1016/j.oceaneng.2022.112369
  18. Gurynenko, S. (2023). Simulation, CFD calculation and estimation of hydrodynamics coefficients of an autonomous unmanned underwater vehicle. International Scientific Technical Journal "Problems of Control and Informatics", 67(6), 5–13.
    https://doi.org/10.34229/1028-0979-2022-6-1

Full text: PDF