O.V. Makhnenko, Dr Sc. (Eng.), G.Yu. Saprykina, Cand. Sc. (Eng.),
Paton Institute of Electric Welding, NAS of Ukraine
11, Malevich St, Kyiv, 03680, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.  

Èlektron. model. 2018, 40(2):71-94


The design features and welding techniques and procedures of the reactor shell have been analyzed. The technique of design determination of welding residual stresses is stated. The models of deformation processes and temperature distribution during welding heating have been constructed. Modeling of the stressed state during welding, surfacing and heat treatment of the ring joint of the PWR-1000 reactor vessel was performed. The results of tracking the development of stresses in the process of welding, surfacing, heat treatment of the welded joint of the reactor PWR-1000 shell are shown; the computed values of residual stresses in the welded joint zone have been compared with experimental data.


reactor, finite element method, welding residual stresses, models of deformation processes, temperature distribution.


1. The SINTAP fracture toughness estimation procedure 2000, available at:
2. РД ЭО 0606-2005 (2004), “The technique for calculating the resistance to brittle fracture of NPP reactor shells with VVER during operation (MRKR-SHR-2004)”, St. Petersburg-Moscow, Russia.
3. Unified procedure for lifetime assessment of components and piping in VVER NPPs «VERLIFE», (2003), Version 8, 5th Framework Programme of EU, Contract N° FIKSCT-2001- 20198.
4. ТУ 108-765-78 (1978), Billets of steel 15KH2NMFA and 15KH2NMFA-A for housings and covers and other units of reactor installations dated 01.08.1978.
5. “Passport of the reactor vessel 2YC00, block number 2, South-Ukrainian NPP”, (1980).
6. Nikolov, D.G., Trifonov, M.Ts. and Bukev, A.I. (1987), “On modeling of thermal sources in arc welding”, Svarochnoe proizvodstvo, no. 6, pp. 34-36.
7. Tsai, С. (1991), Using computers for the design of welded joints, Welding Journal, Vol. 70, no. 1, pp. 47-56.
8. Boitout, F. and Bergheau, J.-M. (2003), The numerical simulation of welding in Europe. Present capabilities and future trends, Transactions of JWRI, Vol. 32, no. 1, pp. 197-206.
9. Rykalin, N.N. (1947), Teplovye osnovy svarki. Chast 1. Protsessy rasprostraneniya tepla pri dugovoy svarke [Thermal basis of welding. Part 1. Processes of heat propagation during arc welding], Izd. AN SSSR, Moscow, USSR.
10. Makhnenko, V.I. (1976), Raschotnyemetody issledovaniya kinetiki svarochnykh napryazheniy i deformatsiy [Calculation methods for studying the kinetics of welding stresses and deformations], Naukova Dumka, Kiev, USSR.
11. Makhnenko, V.I., Velikoivanenko, E.A., Pochinok, V.E., Makhnenko, V.O., Rozynka, G.Ph. and Pivtorak, V.I. (1999), Numerical methods for the prediction of welding stress and distortions, Welding and Surfacing Reviews, Vol. 13, Part 1.
12. Fujita, J. and Nomoto, T. (1978), Welding stress and deformation analysis based on inherent strain method, Proceedings of the Colloquium on Application of Numerical Techniques in Welding, Dublin: IIW.
13. Evaluation of the elevated temperature tensile and creep-rupture properties of 1/2 Cr – 1/2 Mo, 1 Cr – 1/2 Mo, and 1 1/4 Cr – 1/2 Mo-Si Steels, (1973), ASTM Data Series DS 50, American Society for Testing Materials, Philaderphia, USA.
14. Evaluation of the elevated-temðåràture tensile and creep rupture properties of 3 to 9 percent chromium-molybdenum steels, (1971), ASTM Data Series DS 58, American Society for Testing Materials, Philadelphia, USA.
15. Yurev, S.F. (1950), Udelnye obyomy faz v martensitnom prevrashchenii austenita [Specific volumes of phases in the martensitic transformation of austenite], Metallurgizdat, Moscow, USSR.
16. Bolli, B. and Wainer, J. (1964), Teoriya temperaturnykh napryazheniy [Theory of temperature stresses], Mir, Moscow, USSR.
17. Rabotnov, Yu.M. (1966), Polzuchest elementov konstruktsiy [Creep of structural elements],: Nauka, Moscow, USSR.
18. Birger, I.A. and Demianushko, I.V. (1968), “Theory of plasticity under nonisothermal loading”, Inzhenernyi zhurnal MTT, no. 6, pp. 75-80.
19. Makhnenko, V.I., Makhnenko, O.V. and Saprykina, G.Yu. (2006), “Selection of rational parameters of local high tempering welds”, Tyazheloe mashinostroenie, no. 7, pp. 8-11.
20. Ueda, Y., Wang, J., Murakawa, H. and Yuan, M. (1993), Three dimensional numericalsimulation of various thermo-mechanical processes by FEM (Report IV), Transactions of JWRI, Vol. 22, no. 2, pp. 289-294.
21. Neimark, B.E., editor, (1967), Fizicheskie svoistva stalei i splavov ispolzuyemykh v teploenergetike. Spravochnik [Physical properties of steels and alloys used in power engineering. Handbook ], Energy, Moscow, USSR.
22. Zubchenko, A.S., editor, (2014), Marochnik staley I splavov [Reference book of and alloy grades], Mashinostroenie, Moscow, Russia.
23. PNAE G-7-002-87. Rules and regulations in nuclear energy. Norms for calculating the strength of equipment and pipelines of nuclear power plants, available at:
24. РД ЭО 0353-20. (2000), Methodology for determining the life of VVER nuclear reactors in operation. ÌRK-SHR- 2000. St. Petersburg-Moscow, Russia.
25. Makhnenko, V.I. (2006), Resurs bezopasnoy ekspluatatsii svarnykh soedineniy i uzlov sovremennykh konstruktsiy [Resource of safe operation of welded joints and units of modern structures], Naukova Dumka, Kyiv, Ukraine.
26. Grivnyak, I. (1984), Svarivayemost stalei [Weldability of steels], Ed. by E.L. Makarov, Mashinostroenie, Moscow, USSR.
27. Margolin, B.Z., Varovin, A.V. and Kostylev, V.I. (2004), “Determination of residual welding voltages in PWR reactor shells after multipass welding, surfacing and high temperature tempering”, Sbornik trudov Matematicheskoe modelirovanie i informatsionnye tekhnologii v svarke i rodstvennykh protsessakh, pp. 167-173.

Full text: PDF