T.A. Marusenkova

Èlektron. model. 2020, 42(2):69-90


The work deals with the problem of enhancing the operating characteristics of magnetic tracking devices. Magnetic tracking technology is based on calculating the spatial position of an object upon measuring reference magnetic fields in a low-frequency radiation spectrum. The paper presents a solution to development of a mathematical model for a logarithmic signal converter, which is one of the main components of a magnetic tracking device. The converter would enable efficient operation of a magnetic tracking device in a wide measurement range. The parameters of the developed SPICE model are easy to tune. Thus, the model can be efficiently adjusted to conform to experimental data. The parametric optimization of logarithmic converters upon the proposed model gives rise to an efficient analysis of the influence of destabilizing factors on signal compression.


magnetic tracking, logarithmic converter, SPICE model, analog front-end, signal transducer.


  1. Kim, K., Billinghurst, M., Bruder, G., Duh, H. and Welch, G. (2018), “Revisiting trends in augmented reality research: a review of the 2nd decade of ISMAR (2008–2017)”, IEEE Transactions on Visualization and Computer Graphics, Vol. 24, Issue. 11, pp. 2947-2962. DOI: 10.1109/TVCG.2018.2868591.
  2. Chatzopoulos, D., Bermejo, C., Huang, Z. and Hui, P. (2017), “Mobile augmented reality survey: from where we are to where we go”, IEEE Access, Vol. 5, pp. 6917-6950. DOI: 10.1109/ACCESS.2017.2698164.
  3. Mancini, A., Frontoni, E. and Zingaretti, P. (2015), “Embedded multisensor system for safe point-to-point navigation of impaired users”, IEEE Transactions on Intelligent Transportation Systems, Vol. 16, Issue. 6, pp. 3543–3555. DOI: 10.1109/TITS.2015.2489261.
  4. Rohmer, K., Jendersie, J. and Grosch, T. (2017), “Natural environment illumination: coherent interactive augmented reality for mobile and non-mobile devices”, IEEE Transactions on Visualization and Computer Graphics, Vol. 23, Issue. 11, pp. 2474–2484. DOI: 10.1109/TVCG.2017.2734426.
  5. Campbell, A., Gorgu, L., Kroon, B., Lillis, D., Carr, D. and O'Hare, G. (2013), “Giving mobile devices a SIXTH sense: Introducing the SIXTH middleware for Augmented Reality applications”, Proceedings of the 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). DOI: 10.1109/ISMAR.2013.6671787.
  6. Hoff, W., and Vincent, T. (2000), “Analysis of head pose accuracy in augmented reality”, IEEE Transactions on Visualization and Computer Graphics, Vol. 6, Issue. 4, pp. 319-334. DOI: 10.1109/2945.895877.
  7. Oskiper, T., Sizintsev, M., Branzoi, V., Samarasekera, S. and Kumar, R. (2015), “Augmented reality binoculars”, IEEE Transactions on Visualization and Computer Graphics, Vol. 21 Issue. 5, pp. 611–623. DOI: 10.1109/TVCG.2015.2408612.
  8. Fedasyuk, D., Holyaka, R. and Marusenkova, T. (2019), “A tester of the MEMS accelerometers operation modes”, Proceedings of the 3rd International Conference on Advanced Information and Communications Technologies (AICT), Lviv, July 3-6, 2019. DOI: 10.1109/AIACT.2019.8847840.
  9. Fedasyuk, D., Holyaka, R. and Marusenkova, T. (2019), “Method of analyzing dynamic characteristics of MEMS gyroscopes in test measurement mode”, Proceedings of the 9th International Conference on Advanced Computer Information Technologies (ACIT), Ceske Budejovice, June 5-7, 2019, pp. 157-160. DOI: 10.1109/ACITT.2019.8780058.
  10. Hongtao, W., Zhimin, Y., Ping, W., Santoso, B. and Lian, O. (2018), “A novel method of motion tracking for virtual reality using magnetic sensors”, Proceedings of the 2018 Asia-Pacific Magnetic Recording Conference (APMRC), November 15-17, Shanghai, 2018. DOI: 10.1109/APMRC.2018.8601108.
  11. Singh, M. and Jung, B. (2017), “High-definition wireless personal area tracking using AC magnetic field for virtual reality”, 2017 IEEE Virtual Reality (VR). DOI: 10.1109/ 2017.7892250.
  12. Tran-Dang, H. and Kim, D. (2018), “An information framework for Internet of Things services in physical Internet”, IEEE Access, Vol. 6, pp. 43967-43977. DOI: 10.1109/ 2018.2864310.
  13. Jo, S., Cho, H. and Yoo, H. (2019), “A fully reconfigurable universal sensor analog front-end IC for the Internet of Things era”, IEEE Sensors Journal, Vol. 19, Issue. 7, pp. 2621-2633. DOI: 10.1109/JSEN.2018.2890211.
  14. Amer, S., Hasan, M., Adnan, M. and Rose, G. (2019), “SPICE modeling of insulator metal transition: model of the critical temperature”, IEEE Journal of the Electron Devices Society, Vol. 7, pp. 18-25. DOI: 10.1109/JEDS.2018.2875627.
  15. Marusenkova, T.A. (2019), “Simulation models for synthesizing noise of MEMS gyroscopes”, Elektronnoje Modelirovanije, Vol. 41, no. 5, pp. 3-17.
  16. (2018), “Premo 3DV06 Datasheet”, available at: https://3dcoil.grupopremo.com (accessed December 10 2019).
  17. Cypress Semiconductor Corporation. (2019), “PSoC® 5LP: CY8C52LP Family Datasheet: Programmable System-on-Chip”, available at: http://www.cypress.com/documentation/ datasheets/psoc-5lp-cy8c52lp-family-datasheet-programmable-system-chip-psoc (accessed December 12 2019).
  18. Barylo, G., Boyko, O., Holyaka, R., Marusenkova, T., Prudyus, I. and Fabirovskyy, S. (2019), “Signal transducer of functionally integrated thermomagnetic sensors”, Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia, Issue. 76, pp. 63-71.
  19. Cypress Semiconductor Corporation. (2018), “CY8CKIT-050 PSoC 5LP Development Kit Guide”, available at: http://www.cypress.com/file/45276/download (accessed December 10 2019).
  20. Ripka, P. and Zikmund, A. (2011), “Magnetic tracker with high precision”, Procedia Engineering, Vol. 25, pp. 1617-1620.
  21. (2016), “ADuC834. MicroConverter, Dual ADCs with Embedded Flash MCU”, available at: https://www.analog.com/media/en/technical-documentation/data-sheets/ADUC834.pdf (accessed December 16 2019).
  22. Jaeger, R. and Blalock, T. (2016), Microelectronic Circuit Design 5th ed, McGraw-Hill Education.
  23. (2014), “MICRO-CAP. Electronic Circuit Analysis Program. Spectrum Software”, available at: http://www.spectrum-soft.com (accessed April 13 2019).
  24. Cypress Semiconductor Corporation. (2017), “Operational Amplifier (Opamp) – ver. 1.90. PSoC® Creator™ Component Datasheet”.

Full text: PDF