The equal-length redundant code development for the self-checking combinational devices synthesis based on data on their structures

D.V. Efanov, D.Sc.

Federal State Autonomous Educational Institution
of Higher Education "Russian University of Transport"

Russian Federation, 127994, Moscow, st. Obraztsova, 9, building 9

tel. (+7) (911) 7092164, e-mail:

Èlektron. model. 2021, 44(1):43-52


The problem of organizing the automation and computer technology combinational devices control with the diagnostic tools synthesized using redundant coding is considered. In contrast to the known approaches, a method is proposed for generating a uniform separable code, considering the structural features of the original combination devices. This method makes it possible to use data about possible errors at the outputs of the circuit in the code under construction and take this into account when synthesizing the control circuit. When setting the problem, a fault model is determined, relative to which the code will be built with the detection of all (or, possibly, part) errors at the circuit outputs. In contrast to the known redundant codes used to organize the combinational device’s control, the proposed method of generating a code makes it possible to consider the individual features of their structures. Such an approach in the self-checking combinational devices organization with an unchangeable design expands the number of ways to construct them compared to the previously known duplication and use of circuit outputs groups controlled by codes with unique diagnostic properties.


the self-checking combinational device, equal-length redundant code, error detection at the combinational device’s outputs, code construction “under the circuit”, a self-che­cking device structural redundancy.


  1. Sogomonyan, E.S. and Slabakov, E.V. (1989), Samoproverjaemyje ustrojstva i otkazo­ustojchivyje sistemy [Self-checking devices and fault-tolerant systems], Radio i Svjaz`, Moscow, USSR.
  2. Piestrak, S.J. (1995), Design of Self-Testing Checkers for Unidirectional Error Detecting Codes, Oficyna Wydawnicza Politechniki Wrocłavskiej, Wrocław, Poland.
  3. Lala, P.K. (2001), Self-Checking and Fault-Tolerant Digital Design, Morgan Kaufmann Publishers, San Francisco, USA.
  4. Göessel, M., Ocheretny, V., Sogomonyan, E. and Marienfeld, D. (2008), New Methods of Concurrent Checking: Edition 1, Springer Science+Business Media B.V., Dordrecht,
  5. Drozd, A.V., Kharchenko, V.S. and Antoshchuk, S.G. (2012), Rabochee diagnostirovanie bezopasnykh informatsionno-upravljayustchikh sistem [Objects and Methods of On-Line Testing for Safe Instrumentation and Control Systems], National Aerospace University "KhAI", Kharkov, Ukraine.
  6. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Efanov, D.V. (2020), Kody s summirovaniem dlya sistem tekhnicheskogo diagnostirovaniya. Tom 1: Klassicheskie kody Bergera i ih modifikacii [Sum Codes for Technical Diagnostics Systems. Volume 1: Classical Ber­ger Codes and Their Modifications], Nauka, Moscow, Russia.
  7. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Efanov, D.V. (2021), Kody s summirovaniem dlya sistem tekhnicheskogo diagnostirovaniya. Tom 2: Vzveshennyje kody s summirovanijem [Sum Codes for Technical Diagnostics Systems. Volume 2: Weight-Based Sum Codes], Nauka, Moscow, Russia.
  8. Sapozhnikov V.V., Sapozhnikov Vl.V. and Efanov D.V. (2015), “Klassifikatsija oshibok v informatsionnykh vektorakh sistematicheskikh kodov”, Izvestiya Vysshikh Uchebnykh Zavedeniy. Priborostroenie, Vol. 58, no. 5, pp. 333—343,
  9. Berger, J.M. (1961), “А Note on Error Detecting Codes for Asymmetric Channels”, Information and Control, Vol. 4, no. 1, рp. 68—73,
  10. Freiman, C.V. (1962), “Optimal Error Detection Codes for Completely Asymmetric Binary Channels”, Information and Control, Vol. 5, no. 1, pp. 64—71.
  11. Efanov, D.V., Sapozhnikov, V.V, and Sapozhnikov, Vl.V. (2017), “Usloviya obnaru­zheniya neispravnosti logicheskogo ehlementa v kombinacionnom ustrojstve pri funkcio­nal'nom kontrole na osnove koda Bergera”, Avtomatika i telemekhanika, Vol. 5, pp. 152—165.
  12. Sapozhnikov V.V., Sapozhnikov Vl.V. and Efanov D.V. (2020), “Obnaruzhenie neisprav­nostej v kombinacionnyh logicheskih skhemah na osnove ih kontrolya po gruppam simmetrichno nezavisimyh vyhodov”, Electronnoje Modelirovanije, Vol. 42, no. 2, pp. 3—23,
  13. Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2020), “Organization of a Fully Self-Checking Structure of a Combinational Device Based on Searching for Groups of Symmetrically Independent Outputs”, Automatic Control and Computer Sciences, Vol. 54, no. 4, рp. 279—290,
  14. Efanov, D., Sapozhnikov, Vl., Sapozhnikov, V. and Plotnikov, D. (2018), “The Evaluation of Error Detection Probability at the Outputs of Combinational Circuits Under Concurrent Error Detection on the Basis of Summation Codes”, Proceedings of 16th IEEE East-West Design & Test Symposium (EWDTS’2018), Kazan, Russia, September 14-17, 2018, pp. 154—158,
  15. Zakrevskij, A., Pottosin, Yu. and Cheremisinova, L. (2009), Optimization in Boolean Space, TUT Press, Tallinn, Estonia.
  16. Gessel M., Morozov A.A., Sapozhnikov V.V. and Sapozhnikov Vl.V. (1997), “Issledovanie kombinacionnyh samoproveryaemyh ustrojstv s nezavisimymi i monotonno nezavisimymi vyhodami”, Avtomatika i telemechanika, Vol. 2, pp. 180—193.
  17. Efanov D.V., Sapozhnikov V.V. and Sapozhnikov Vl.V. (2018), “Sintez samoproveryaemyh kombinacionnyh ustrojstv na osnove vydeleniya special'nyh grupp vyhodov”, Avto­matika i telemekhanika, Vol. 9, pp. 79—94.
  18. Sapozhnikov, V.V., Morosov, A., Sapozhnikov,Vl.V. and Göessel, M. (1998), “A New Design Method for Self-Checking Unidirectional Combinational Circuits”, Journal of Electronic Testing: Theory and Applications, Vol. 12, no. 1-2, рp. 41—53,
  19. Morosow, A, Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Goessel, M. (1998), “Self-Checking Combinational Circuits with Unidirectionally Independent Outputs”, VLSI Design, Vol. 5, no. 4, рp. 333—345,

Full text: PDF