STRUCTURAL MODELS FOR DESCRIBING X-RAY SCATTERING FROM CARBON NANOTUBES

Е.А. Lysenkov, Сand. Sc. (Phys.-Math.)
Sukhomlinskyi National University of Nikolaev, 24 Nikolskaya St, Nikolaev, 54030, Ukraine
е-mail: ealysenkov@ukr.net
S.I. Bohvan, Post-graduate,  V.V. Klepko, Dr. Sc. (Phys.-Math.),
Institute of Chemistry of High-Molecular Compounds, 48 Khsrkovskoye Shosse, Kyiv, 02160, Ukraine, e.mail: This email address is being protected from spambots. You need JavaScript enabled to view it.;  This email address is being protected from spambots. You need JavaScript enabled to view it.

Èlektron. model. 2018, 40(3):105-117
https://doi.org/10.15407/emodel.40.03.105

ABSTRACT

An overview of the most correct structural models for describing small-angle X-ray scattering from carbon nanotubes (CNT) is presented in the article. It is shown that the model of rigid rods, in which nanotubes are presented as rods, does not allow for their flexibility and aggregation, so it agrees badly with the experiment. The model of flexible cylinders does not take into account the formation of large aggregates from CNT. The model of flexible tangled tubes describes well the experiment in a wide range of scattering angles and allows obtaining comprehensive information on the structural parameters of CNT and their aggregation.

KEYWORDS

small angle X-ray scattering, carbon nanotubes, structural models, fractal aggregation, radius of gyration

REFERENCES

1. Varshney, K. (2014), “Carbon nanotubes: A review on synthesis, properties and applications”, International Journal of Engineering Research and General Science, Vol. 2, no. 4,
pp. 660-677.
2. Saifuddin, N., Raziah, A.Z. and Junizah, A.R. (2013), “Carbon nanotubes: A review on structure and their interaction with proteins”, Journal of Chemistry, Vol. 2013, Article ID 676815.
https://doi.org/10.1155/2013/676815
3. Chavan, R., Desai, U., Mhatre, P. and Chinchole, R. (2012), “A review: Carbon nanotubes”, International Journal of Pharmaceutical Sciences Review and Research, Vol. 13, no. 1, pp. 125-134.
4. Ghoshal, S. (2017), “Polymer/carbon nanotubes (CNT) nanocomposites processing using additive manufacturing (three-dimensional printing) technique: An overview”, Fibers, Vol. 5, pp. 40-1–40-15.
https://doi.org/10.3390/fib5040040
5. Thess, A., Jee, R., Nikolaev, P., et al. (1996), “Crystalline ropes of metallic carbon nanotubes”, Science, V. 273, pp. 483–487.
https://doi.org/10.1126/science.273.5274.483
6. Rols S., Almairac R., Henrard L., et al. (2000), “Diameter distribution of single wall carbon nanotubes in nanobundles”, Eur. Phys. J. B., Vol. 18, pp. 201-205.
https://doi.org/10.1007/s100510070049
7. Rols, S., Goncharenko, I.N., Almairac, R., et al. (2001), “Polygonization of single-wall carbon nanotube bundles under high pressure”, Phys. Rev. B., Vol. 64, pp. 153401-153408.
https://doi.org/10.1103/PhysRevB.64.153401
8. Mollaamin, F. and Monajjemi, M. (2012), “Fractal dimension on carbon nanotube-polymer composite materials using percolation theory”, Journal of Computational and Theoretical Nanoscience, Vol. 9, no. 4, pp. 597-601.
https://doi.org/10.1166/jctn.2012.2067
9. Schaefer, D.W., Brown, J.M., Anderson, D.P., et al. (2003), “Structure and dispersion of carbon nanotubes”, J. Appl. Cryst., Vol. 36, pp. 553-557.
https://doi.org/10.1107/S0021889803005028
10. Schaefer, D.W., Zhao, J., Brown, J.M., et al. (2003), “Morphology of dispersed carbon single-walled nanotubes”, Chemical Physics Letters, Vol. 375, pp. 369-375.
https://doi.org/10.1016/S0009-2614(03)00867-4
11. Inada, T., Masunaga, H., Kawasaki, S., et al. (2005), “Small angle X-ray scattering from multi-walled carbon nanotubes (CNTs) dispersed in polymeric matrix”, Chemistry Letters, Vol. 34, no. 4, pp. 524-525.
https://doi.org/10.1246/cl.2005.524
12. Lipatov, Yu.S., Shilov, V.V., Gomza, Yu.P. and Kruglyak, N.Å. (1982), Rentgenograficheskie metody izucheniya polimernykh system [X-ray methods for studying polymer systems], Naukova Dumka, Kiev, USSR.
13. Vonk, C.G. (1974), FFSAXS’s Program for the processing of small-angle X-ray scattering data, DSM, Geleen, Netherlands. 
14. Zhao, C., Hu, G., Justice, R., et al. (2005), “Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization”, Polymer, Vol. 46, pp. 5125-5132.
https://doi.org/10.1016/j.polymer.2005.04.065
15. Lósenkov, E.A., Gomza, Yu.P., Klepko, V.V. and Kunitsky, Yu.A. (2010), “The structure of the carbon nanotubes of nanocomposites on the basis of carbon nanotubes”, Fizyka ta himiya tverdoho tila, Vol. 11, no. 2, pp. 361-366.
16. Teixeira, J. (1988), “Small-angle scattering by fractal systems”, J. Appl. Cryst., Vol. 21, no. 6, pp. 781-785.
https://doi.org/10.1107/S0021889888000263
17. Brown, J.M., Anderson, D.P., Justice, R.S., et al. (2005), “Hierarchical morphology of carbon single-walled nanotubes during sonication in an aliphatic diamine”, Polymer, Vol. 46, pp. 10854-10865.
https://doi.org/10.1016/j.polymer.2005.08.089
18. Beaucage, G. and Schaefer, D.W. (1994), “Structural studies of complex systems using small-angle scattering: a unified Guinier/power-law approach”, J. Non-Cryst. Solids, Vol. 172, pp. 797-805.
https://doi.org/10.1016/0022-3093(94)90581-9
19. Beaucage, G. (1995), “Approximations leading to a unified exponential/power-law approach to small-angle scattering”, J. Appl. Cryst., Vol. 28, no. 6, pp. 717-728.
https://doi.org/10.1107/S0021889895005292
20. Schaefer, D.W., Justice, R.S., Koerner, H., et al. (2005), “Large-scale morphology of dispersed layered silicates”, MRS Symp. Proc., Vol. 840, Q. 3.3.1-Q.3.3.6.
21. Roe, R.-J. (2000), Methods of X-ray and neutron scattering in polymer science, Oxford University Press, New York, USA.

Full text: PDF