Typical structure of a duplicate error correction scheme with code control with summation of weighted transitions

D.V. Efanov, Dr Sc. (Tech.)
Peter the Great St. Petersburg Polytechnic University
Russian Federation, 195251, St. Petersburg, Polytechnic St., 29,
contact phone number (+7) 911 7092164, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
V.V. Sapozhnikov, Dr Sc. (Tech.), Vl.V. Sapozhnikov, Dr Sc. (Tech.),
Emperor Alexander I St. Petersburg State Transport University,
Russian Federation, 190031, St. Petersburg, Moskovsky ave., 9,
contact phone number (+7) (812) 4578579, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Èlektron. model. 2020, 42(5):38-50


Error correction circuit typical structures are described — majority and duplication structure with control by parity. A new structure of the correction circuit based on duplication with weighted-transitions sum code control is proposed. The code is constructed by weighting the transitions between the adjacent bits in data vectors, numbers from sequentially increasing powers of the number «two», starting from the zero degree. The specified code detects any errors in data vectors, except for errors associated with distortions of all data bits at the same time. The weighted sum code features allow it to be used in the synthesis of error detection circuits. An example of the correction circuit synthesis is given. The experiments results using control combinational circuits MCNC Benchmarks showed that the duplication structure with weighted-transitions sum code control in many cases allows one to obtain lower complexity indicators values of the correction circuits technical implementation than the known structure of majority correction.


combinational automation devices, systems with fault detection, systems with error correction in calculations, fault-tolerant systems, duplication, triplication.


  1. Shcherbakov, N.S. (1975), Samokorrektiruyushchiesya diskretnye ustrojstva [Self-cor­recting discrete devices], Mashinostroenie, Moscow, USSR.
  2. Sogomonyan, E.S. and Slabakov, E.V. (1989), Samoproverjaemyje ustrojstva i otkazous­tojchivyje sistemy [Self-checking devices and failover systems], Radio & Svjaz`, Moscow, USSR.
  3. Gavrilov, M.A., Ostianu, V.M. and Potekhin, A.I. (1969, 1970), Nadezhnost' diskretnyh sistem [Reliability of discrete systems], Itogi nauki i tekhniki. Ser. «Teoriya veroyatnostej. Matematicheskaya statistika. Teoreticheskaya kibernetika», 1969, 1970.
  4. Sogomonyan, E.S. (2018), Self-Correction Fault-Tolerant Systems, Preprint.
  5. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Hristov, H.A. and Gavzov, D.V. (1995), Metody postroeniya bezopasnyh mikroehlektronnyh sistem zheleznodorozhnoj avtomatiki [Methods for constructing safety microelectronic systems for railway automation], Transport, Moscow, Russia.
  6. Dobiáš, R. and Kubátová, H. (2004), “FPGA Based Design of Railway's Interlocking Equipment”, the Proceeding of EUROMICRO Symposium on Digital System Design, 2004, pp. 467-473.
  7. Dobiáš, R., Konarski, J. and Kubátová, H. (2008), “Dependability Evaluation of Real Railway Interlocking Device”, the Proceeding of 11th Euromicro Conference on Digital System Design, IEEE Computer Society, Los Alamitos, 2008, pp. 228-233.
  8. Chakraborty, A. (2009), “Fault Tolerant Fail Safe System for Railway Signalling”, Proceeding of the World Congress on Engineering and Computer Science (WCECS 2009), USA, San Francisco, Vol. 2, October 20-22, 2009.
  9. Ubar, R., Raik, J. and Vierhaus, H.T. (2011), Design and Test Technology for Dependable Systems-on-Chip, Information Science Reference, IGI Global, New York, USA.
  10. Theeg, G. and Vlasenko, S. (2018), Railway Signalling& Interlocking: 2nd Edition, PMC Media House GmbH, Hamburg, Germany.
  11. Borecký, , Kohlík, M., Vít, P. and Kubátová, H. (2016), “Enhanced Duplication Method with TMR-Like Masking Abilities”, the Proceeding of Conference on Digital System Design (DSD), 31 August – 2 September, 2016, Limassol, Cyprus, pp. 690-693.
  12. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V. and Dmitriev, V.V. (2017), “New structures of the concurrent error detection systems for logic circuits”, Avtomatika i telemekhanika, no. 2, pp. 127-143.
  13. Kharchenko, V.S. (1992), “Models and properties of multi-alternative fault-tolerant systems”, Avtomatika i telemekhanika, no. 12, pp. 140-147.
  14. Ghosh, S., Basu, S. and Touba, N.A. (2005), “Synthesis of Low Power CED Circuits Based on Parity Codes”, the Proceeding of 23rd IEEE VLSI Test Symposium (VTS'05), 2005, pp. 315-320.
  15. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V. and Cherepanova, M.R. (2016), “Modulo codes with summation in concurrent error detection systems. I. Ability of modulo codes to detect error in data vectors”, Elektronnoye Modelirovaniye, Vol. 38, no. 2, pp. 27-48.
  16. Gessel', M., Morozov, A.A., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (1997), Investigation of combinational self-checking devices with independent and unidirectionally independent outputs”, Avtomatika i telemekhanika, no. 2, pp. 180-193.
  17. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Efanov, D.V. (2018), Kody Hemminga v sistemah funkcional'nogo kontrolya logicheskih ustrojstv [Hamming codes in concurrent error detection systems of logic devices], Nauka, St. Petersburg, Russia.
  18. Sogomonyan, E.S. and Gössel, M. (1993), “Design of Self-Testing and On-Line Fault Detection Combinational Circuits with Weakly Independent Outputs”, Journal of Electronic Testing: Theory and Applications, Vol. 4, Iss. 4, pp. 267-281. 
  19. Morosow, A., Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Goessel, M. (1998), “Self-Checking Combinational Circuits with Unidirectionally Independent Outputs”, VLSI Design, Vol. 5, Iss. 4, pp. 333-345.
  20. Hahanov, V.I., Hahanova, I.A., Litvinova, E.I. and Guz,' O.A. (2010), Proektirovanie i verifikaciya cifrovyh sistem na kristallah [Design and verification of digital systems on chips], Novoe slovo, Kharkiv, Ukraine.
  21. Harris, D.M. and Harris, S.L. (2012), Digital Design and Computer Architecture, Morgan Kaufmann, USA.
  22. Sentovich, E.M., Singh, K.J. and Moon, C. (1992), “Sequential Circuit Design Using Synthesis and Optimization”, the Proceeding of the IEEE International Conference on Computer Design: VLSI in Computers & Processors, October 11-14, 1992, Cambridge, MA, USA, USA, pp. 328-333. DOI: 1109/ICCD.1992.276282
  23. “Collection of Digital Design Benchmarks”, available at: http://ddd.fit.cvut.cz/prj/ Benchmarks/ (accessed September 09, 2020)
  24. Sapozhnikov, V., Efanov, D., Sapozhnikov, Vl. and Dmitriev, V. (2017), “Method of Combinational Circuits Testing by Dividing its Outputs into Groups and Using Codes, that Effectively Detect Double Errors”, the Proceeding of 15th IEEE East-West Design & Test Symposium (EWDTS`2017), Novi Sad, Serbia, September 29 – October 2, 2017, pp. 129-136, 

Full text: PDF