E.A. Lysenkov, V.V. Klepko

Èlektron. model. 2018, 38(1):113-124


The basic theoretical models of electrical conductivity of polymeric nanocomposites and their accordance to experimental results are analyzed for the polyether-carbon nanotubes (CNT) systems using the methods of mathematical simulation. It is shown that the theoretical Scarisbrick, McCullough and Keith models well describe an experiment only in the area of concentrations larger than the percolation threshold. It is discovered that a sigmoidal model, which takes into account the existence of percolation threshold, well describes experimental data of electrical conductivity of the polyether-CNT systems in the wide range of concentrations.


percolation behavior, polymer nanocomposites, electrical conductivity, carbon nanotubes.


1. Mittal, G., Dhand, V., Rhee, K.Y., Park, S.-J. and Lee, W.R. (2015), “A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites”, J. of Industrial and Engin. Chem., Vol. 21, pp. 11-25.
2. Bauhofer, W. and Kovacs, J.Z. (2009), “A review and analysis of electrical percolation in carbon nanotubes polymer composites”, Compos. Sci. Technol., Vol. 69, pp. 1486-1498.
3. McNally, T. and P otschke, P. (2011), Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications, Woodhead Publishing, Cambridge, UK.
4. Zhang, J., Mine, M., Zhu, D. and Matsuo, M. (2009), “Electrical and dielectric behaviours and their composites with low percolation threshold”, Carbon, Vol. 47, no. 5, pp. 1311-1320.
5. Bao, H.-D., Sun, Y., Xiong, Z.-Y., Guo, Z.-X. and Yu, J. (2013), “Effects of the dispersion state and aspect ratio of carbon nanotubes on their electrical percolation threshold in a polymer”, J. Appl. Polym. Sci., Vol. 128, no. 1, pp. 735-740.
6. Lysenkov, E.A. and Klepko, V.V. (2013), “Features of charge transfer in the polyethylene glycol / carbon nanotubes system”, Zhurnal nano- ta elektronnoyi fizyky, Vol. 5, no. 3, pp. 03052-1–03052-6.
7. Lysenkov, E.A., Yakovlev, Y.V. and Klepko, V.V. (2013), “Percolative properties of systems based on polypropylene glycol and carbon nanotubes”, Ukr. J. Phys., Vol. 58, no. 4, pp. 378-384.
8. Lysenkov, E.A., Klepko, V.V. and Yakovlev, Y.V. (2013), “Influence of the features of polymer matrix on percolation behaviour of the polyether–carbon nanotubes nanocomposites”, Nanostrukturne materialoznavstvo, no. 3-4, pp. 46-54.
9. Scarisbrick, R.M. (1973), “Electrically conducting mixtures”, J. Phys. D. Appl. Phys., Vol. 6, pp. 2098-2110.
10. Ram, R., Rahaman, M. and Khastgir, D. (2015), “Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) semi-transparent composites: Modelling of DC conductivity”, Composites: Part A., Vol. 69, pp. 30-39.
11. McCullough, R.L. (1985), “Generalized combining rules for predicting transport properties of composite materials”, Compos. Sci. Technol., Vol. 22, pp. 3-21.
12. Clingerman, M.L., Weber, E.H., King, J.A. and Schulz, K.H. (2003), “Development of an additive equation for predicting the electrical conductivity of carbon-filled composites”, J. Appl. Polym. Sci., Vol. 88, pp. 2280-2299.
13. Keith, J.M., King, J.A. and Barton, R.L. (2006), “Electrical conductivity modeling of carbon-filled liquid-crystalline polymer composites”, J. Appl. Polym. Sci., Vol. 102, pp. 3293-3300.
14. Tjorve, E. (2003), “Shapes and functions of species-area curves: a review of possiblemodels”, J. of Biogeography, Vol. 30, no. 6, pp. 827-835.
15. Vargas-Bernal, R., Herrera-Pårez, G., Calixto-Olalde, M.E. and Tecpoyotl-Torres, M. (2013), “Analysis of DC electrical conductivity models of carbon nanotube-polymer composites with potential application to nanometric electronic devices”, J. of Electrical and Comput. Engin., Vol. 2013, pp. 1-14.
16. Taherian, R. (2014), “Development of an equation to model electrical conductivity of polymer-based carbon nanocomposites”, ECS J. of Solid State Sci. and Technol., Vol. 3, no. 6, pp. M26-M38.

Full text: PDF (in Russian)