Electronic modeling

Vol 40, No 2 (2018)

https://doi.org/10.15407/emodel.40.02

CONTENTS

Mathematical Modeling and Computation Methods

  VYNNYCHUK S.D.
Definition of Flow Distribution in Networks with the Predominant Tree Structure of the Graph on the Basis of Potential Values at the Midpoint of Branch-Chords


3-16
  ZVARITCH V.N., MYSLOVYCH M.V.
White Noise in Some Simulation Problems of Information Signals

17-26

Informational Technologies

  ABRAMOVYCH R.P., BALVA A.A., SAMOILOV V.D.
Integrated Technology for Designing Computer-Aided Scenario Type Software Used for Training Personnel of Energy Industry

27-42

Computational Processes and Systems

  SAPOZHNIKOV V.V., SAPOZHNIKOV Vl.V., EFANOV D.V.
Weighted Codes with Permutations – a New Class of Codes with Summation for Technical Diagnostics of Discrete Systems

43-70

Application of Modeling Methods and Facilities

  MAKHNENKO O.V., SAPRYKINA G.Yu.
Modeling of Residual Stresses in the Area of Technological Welds of PWR-1000 Reactor Shells


71-94
  PODGURENKO V.S., TEREKHOV V.E.
Mathematical Modeling of the Pitch-Controlled Wind Turbine Work


95-104
  POPOV V.A., YARMOLIUK O.S., TKACHENKO F.V., YATSENKO D.V.
Features of Multicriteria Evaluation of Alternative Options of Distributed Generation Applications Taking in Conditions of Initial Information Uncertainty


105-118
Chronicle and information 119-123

DEFINITION OF FLOW DISTRIBUTION IN NETWORKS WITH THE PREDOMINANT TREE STRUCTURE OF THE GRAPH ON THE BASIS OF POTENTIAL VALUES AT THE MIDPOINT OF BRANCH-CHORDS

S.D. Vynnychuk, Dr Sc. (Eng.),
Pukhov Institute for Problems of Modelling in Energy Engineering, NAS of Ukraine,
15 General Naumov St, Kyiv, 03164, Ukraine, e-mailThis email address is being protected from spambots. You need JavaScript enabled to view it.

Èlektron. model. 2018, 40(2):03-16
https://doi.org/10.15407/emodel.40.02.003

ABSTRACT

An algorithm RP is proposed for calculating the flow distribution in distributive networks with graph G of the dominant tree structure, in which the number of cycles h does not exceed the root from the number of its nodes V, with linear dependences of the potential change on the current. The algorithm is based on reducing the graph to a tree by breaking the branches-chords and determining the value of the potential at their midpoint. The algorithm provides for the calculation of two currents for fixed potentials, the computational complexity of which is T (E) =O (E), where E is the number of branches of the graph. To determine the unknown potentials at the midpoints h of the branches-chords, a system of linear equations of the order h is formed, the coefficients and right-hand parts of which are formed from the results of h additional calculations of currents for
different variants of fixed values of the potentials. The computational complexity of determining the unknown potentials and currents is of the order O (hE* + E + h3), where E* is the number of branches of the equivalent graph G*, i.e., the subgraph G obtained on the basis of the folding of the hanging nodes. For h of magnitude no higher than O (V3/2), and the amount of necessary memory is proportional to the number of nodes in the graph. For h will be the order of magnitude no higher than O (V3/2), and the amount of necessary memory is proportional to the number of nodes in the graph. A method for analyzing the structure of the graph of the distribution system is proposed, which allows identifying the branches of the graph, the removal of which leads to the decomposition of the graph G* into components whereby the system of linear equations of order h can be divided into subsystems.

KEYWORDS

distribution network, flow distribution, equivalence, convolution, brancheschords.

REFERENCES

1. Bun, R.A., Vasiliev, E.D. and Semotyuk, V.N. (1991), Modelirovanie elektricheskikh tsepey metodom podskhem, Otv. red. Gritsyk, V.V., AN Ukrainy, Fiziko-mekhanicheskiy in-t. [Simulation of electrical circuits by subcircuits, Ed. Grytsyk, V.V., Academy of Sciences of Ukraine, Physical-Mechanical inst.], Naukova dumka, Kiev, Ukraine.
2. Maksimovich, N.G. (1961), Lineinye elektricheskie tsepi i ikh preobrazovaniya [Linear circuits and their conversion], Gosenergoizdat, Moscow-Leningrad, Russia.
3. Pukhov, G.Ye. (1967), Metody analiza i sinteza kvazi analogovykh elektronnykh tsepey [Methods of analysis and synthesis of the quasi analog electronic circuits], Naukova Dumka, Kiev, Ukraine.
4. Seshu, S. and Rid, M.B. (1971), Lineinye grafy i elektricheskie tsepi, Per. s angl., pod red. P.A. Ionkina, Uchebnoe posobie dlya vuzov spetsialnostey radiotekhnika, elektronnaya tekhnika, elektropriborostroenie i avtomatika [Line graphs and circuits, Transl. from English., Ed. Ionkin, P.A., Textbook for Universities radio engineering specialties, electronic engineering, electrical instrumentation and automation], Vysshaya shkola, Moscow, Russia.
5. Sigorskiy, V.P. and Petrenko, A.I. (1970), Algoritmy analiza elektronnykh skhem [Algorithms analysis of electronic circuits], Tekhnika, Kiev, Ukraine.
6. Shakirov, I.A. (1980), “Universal conversion and diakoptics circuits”, Abstract of Dr. Sci. (Tech.) dissertation, Leningrad, Russia.
7. Vynnychuk, S.D. (2016), “Definition of stream distribution in networks with a tree-like graph”, Elektronnoe modelirovanie, Vol. 38, no. 4, pp. 65-80.
8. Merenkov, A.P. and Khasilev, V.Ya. (1985), Teoriya gidravlicheskikh tsepey [Theory of hydraulic circuits], Nauka, Moscow, Russia.
9. Akopyan, S.G. (1993), “Electrical theory of hydraulic circuits and methodical bases of modes analysis and optimal design of gas transmission systems”, Abstract of Dr. Sci. (Tech.) dissertation, 05.13.12, 05.15.13. Gosudarstvennyi inzhenernyi universitet, Yerevan, Armenia.
10. Shargin, Yu.M. and Merkuriev, A.G. (2003), “Calculation of electrical modes of the method of equivalent transformation”, Elektrichestvo, no. 4, pp. 53-55.
11. Vynnychuk, S.D. and Samoylov, V.D. (2015), “Determination of the currents in the switching structures of the electrical energy networks with tree graph’s structure”, Elektronnoe modelirovanie, Vol. 37, no. 5, pp. 89—104.
12. Bessonov, L.A. (1978), Teoreticheskie osnovy elektrotekhniki: Elektricheskie tsepi. Uchebnik dlya studentov elektrotekhnicheskikh, energeticheskikh i priborostroitelnykh spetsialnostey vuzov, 7-ye izd., pererabotannoye i dop. [Theoretical fundamentals of electrical engineering: Electric circuits. Textbook for students of electrical, power and instrument engineering specialties of universities, 7-th ed., revised and additional], Vysshaya shkola, Moscow, Russia.

Full text: PDF

White Noise in Some Simulation Problems of Information Signals

V.N. Zvaritch, Dr Sc. (Eng.), M.V. Myslovych, Dr Sc. (Eng.)
Institute of Electrodynamics of the National Academy of Sciences of Ukraine
56, Pobeda Av. Kyiv, 03680, Ukraine,
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.; This email address is being protected from spambots. You need JavaScript enabled to view it.

Èlektron. model. 2018, 40(2):17-26
https://doi.org/10.15407/emodel.40.02.017

ABSTRACT

A constructive method of information signal mathematical models characterization on the white noise basis is developed. Linear random processes, linear random processes with periodic structures, linear autoregressive processes, linear autoregressive processes with periodic structures are represented as examples of the method application.

KEYWORDS

white noise, linear random process, linear random process with periodic structures, linear autoregressive processes.

REFERENCES

1. Ito, K. (1954), Stationary random distribution, Mem. Coll. Univ., Vol. 28, pp.209-223.
2. Kolmogorov, A. (1932), Sulla forma generale di un processo stocastieo omegeneo, Atti. della Reale Academia nazionale dei Lincei. Ser. sesta Rendiconti, Vol. 15, no.10, pp. 805-808.
3. Khinchin, A. (1938), Predelnye zakony dlya sum nezavisimykh stokhasticheskikh velichin [Limit laws for sums of independent stochastic values], ONTI, Moscow-Leningrad, USSR.
4. Martchenko, B. (1973), Metod stokhasticheskikh integralnykh predstavleniyi i yego primeneniye v radiotekhnike [Method of stochastic integral representations and its applications in radio-engineering], Naukova dumka, Kiev, USSR.
5. Brockwell, P.J. and Davis, R.A. (2002), Introduction to time series and forecasting, 2nd edition, Springer, New York, USA.
https://doi.org/10.1007/b97391
6. Iwueze, I.S., Arimie, C.O., Iwu, H.C. and Onyemachi, E. (2017), Some applications of the linear Gaussian white noise process, Applied Mathematics, Vol. 8, pp. 1918-1938.
https://doi.org/10.4236/am.2017.812136
7. Zvaritch, V., Myslovitch, M. and Martchenko, B. (1994), White noise in information signals models, Appl. Math. Lett., Vol. 7, no. 3, pp. 93-95.
https://doi.org/10.1016/0893-9659(94)90120-1
8. Ogura, H. (1971), Spectral representation of a periodic nonstationary random process, IEEE Transaction of Information Theory, Vol. IT-17, no. 2, pp. 143-149.
https://doi.org/10.1109/TIT.1971.1054612
9. Skhorokhod, A. (1964), Sluchainye protsessy c nezavisimymi prirashcheniyami [Random processes with independent increments], Nauka, Moscow, USSR.
10. Slutskiy, Å.Å. (1960), Izbrannye statyi [Selected papers], Izdatelstvo Academii Nauk SSSR, Moscow, USSR.
11. Zvaritch, V., Myslovitch, M. and Martchenko, B. (1995), The models of random periodic information signals on the white noise bases, Appl. Math. Lett., Vol. 8, no. 3, pp. 87-89.
https://doi.org/10.1016/0893-9659(95)00035-O
12. Zvaritch, V., Myslovitch, M. and Martchenko, B. (1995), Stochastically periodical random processes used as models of information signals, Radioelectronics and Communication Systems, Vol. 38, no. 1, pp. 129-132.
13. Zvarich, V.N. and Marchenko, B.G. (1999), “The method of determining characteristic functions of the generating processes for linear autoregression processes”, Izvestiya Vysshikh Uchebnykh Zavedeniy Radioelektroniki, Vol. 42, no. 7, pp. 64-71.
14. Zvarich, V.N. and Marchenko, B.G. (2002), “Characteristic function of the generating process in the model of stationary linear AR-gamma process”, Izvestiya Vysshikh Uchebnykh Zavedeniy Radioelektroniki, Vol. 45, no. 8, pp. 12-18.
15. Zvarich, V.N. (2016), Peculiarities of finding characteristic functions of generating process in the model of stationary linear AR(2) process with negative binomial distribution, Radioelectronics and Communication Systems, Vol. 59, no. 12, pp. 567-573.
https://doi.org/10.3103/S0735272716120050
16. Zvarich, V.N. and Marchenko, B.G. (2011), Linear autoregressive processes with periodic structures as models of information signals, Radioelectronics and Communication Systems, Vol. 54, no. 7, pp. 367-372.
https://doi.org/10.3103/S0735272711070041
17. Shao, X. (2011), Testing for white noise under unknown dependence and its applications to diagnostic checking for time seriesmodels, Econometric Theory,Vol. 27, no. 2, pp. 312-343.
https://doi.org/10.1017/S0266466610000253
18. Zvaritch, V. and Glazkova, E. (2015), Some singularities of kernels of linear AR and ARMA processes and their applications to simulation of information signals, Computational Problems of Electrical Engineering, Vol. 5, no. 1, pp. 71-74.

Full text: PDF

INTEGRATED TECHNOLOGY FOR DESIGNING COMPUTER-AIDED SCENARIO TYPE SOFTWARE USED FOR TRAINING PERSONNEL OF ENERGY INDUSTRY

R.P. Abramovych, A.A. Balva, Cand. Sc. (Eng.), 2 V.D. Samoilov, Dr Sc. (Eng.),
1 Scientific-Production Enterprise ASOT
33 Navrotsky St, Lviv, 79034, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
2 Pukhov Institute for Problems of Modelling in Energy Engineering, NAS of Ukraine,
15 General Naumov St, Kyiv, 03164, Ukraine, This email address is being protected from spambots. You need JavaScript enabled to view it.; This email address is being protected from spambots. You need JavaScript enabled to view it.

Èlektron. model. 2018, 40(2):27-42
https://doi.org/10.15407/emodel.40.02.027

ABSTRACT

An integrated technology for development of computer-aided software aimed at training energy industry personnel is presented. This technology, based on a scenario-pedagogical design method with the use of graphic specifications, is implemented in the adapted FLASH multimedia package as a construction set in order to involve industry specialists into the design process. Examples of technology components implementation in construction of training scenario type systems for personnel of distribution energy companies are presented.

KEYWORDS

computer-aided training software, scenario, situational training simulators, graphical specification, computer-integrated technology, energy company.

REFERENCES

1. Samoilov, V.D. (2007), Modelnoye konstruirovaniye kompyuternykh prilozheniy [Model design of computer applications], Naukova dumka, Kyiv, Ukraine. 
2. MODUS company, available at: http://www.swman.ru/.
3. Shchebnev, V.S., Ilchenko, A.G., Tokov, A.Yu. et al. (2007), “Computer technologies in the system of training operational personnel of TPP and NPP”, Vestnik of Ivanovo Gosudarstvennogo energeticheskogo Universiteta, Vol. 2, pp.10-14.
4. Balva, A.A. and Samoilov, V.D. (2011), “Formalization of the description of computer applications on the basis of graphic notations,” Elektronnoe modelirovanie, Vol. 33, no. 5, pp. 43-56.
5. Balva, A.A., Samoilov, V.D. and Maksimenko, E.A. (2013), “The structure and technology of constructing a graphical model of a scenario-type application”, Zbirnyk naukovykh prats IPME NAN Ukrainy im. G.E. Pukhova, Vol. 68, pp. 3-11.
6. Abramovych, R.P., Balva, À.À. and Samoilov, V.D. (2014), “Development of navigation model for computer simulators and scenario-type applications”, Elektronnoe modelirovanie, Vol. 36, no. 1, pp. 97-103.
7. Vynnychuk, S.D. and Samoilov, V.D. (2015), “Determination of currents in commutative structure of the electricity networks with a tree structure graph”, Elektronnoe modelirovanie, Vol. 37, no. 5, pp. 89-104.
8. Samoilov, V.D., Vynnychuk, S.D. and Abramovych, R.P. (2015), “The method of lifting the load currents to input node to calculate the energy distribution networks”, Elektronnoe modelirovanie, Vol. 37, no. 6, pp. 83-97.
9. Samoilov, V.D. and Netlyukh, O.P. (2012), “Constructing situational simulators using AUTHORWARE”, Zbirnyk naukovykh prats IPME NAN Ukrainy im. G.E. Pukhova, Vol. 62, pp. 109-117.
10. Leonenkov, A. (2007), Samouchitel UML 2 [UML 2 Tutorial], BHV, St. Petersburg, Russia.
11. Adobe Flash CS5. (2011), Ofitsialny uchebnyi kurs [Official training course], Eksmo, Moscow, Russia.

Full text: PDF

WEIGHTED CODES WITH PERMUTATIONS — A NEW CLASS OF CODES WITH SUMMATION FOR TECHNICAL DIAGNOSTICS OF DISCRETE SYSTEMS

V.V. Sapozhnikov,  Dr Sc. (Eng.), Vl.V. Sapozhnikov, Dr Sc. (Eng.),D. V. Efanov,  Cand. Sc. (Eng.),
Emperor Alexander State University of Communication Means of St.-Petersburg
9 Moskovsky Ave, St.-Petersburg, 190031, Russian Federation, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Èlektron. model. 2018, 40(2):43-70
https://doi.org/10.15407/emodel.40.02.043

ABSTRACT

A method for formation of a code with summation that effectively detects errors of small multiplicity is described. The method is based on weighting the transitions between the bits occupying neighboring positions in data vectors, the weight coefficients from the natural number of numbers, the subsequent calculation of the modified weight of the data vector, and also by applying a series of special permutations of the resulting weights between the data vectors. The check functions of the resulting «permutation» code are linear and are described only using the addition operation modulo two. The properties of error detection of various types andmultiplicities by new codes are analyzed, and a comparison with known codes revealing double errors is made. It is established that the new code detects any twofold errors in data vectors with data vector lengths m <10. It is shown that the permutation code has the advantage over any known codes detecting double errors,with data vectors lengthsm=8 andm= 9. Experimentswith benchmarks have allowed to confirm the theoretical results, aswell as to evaluate the effectiveness of the application of the new code in the concurrent error detection systems by the indicators of structural redundancy.

KEYWORDS

technical diagnostics of discrete systems, summation code, Berger code, Hamming code, modified weighted code, detection of double errors, structural redundancy.

REFERENCES

1. Parkhomenko, P.P. and Sogomonyan, E.S. (1981), Osnovy tekhnicheskoy diagnostiki (optimizatsiya algoritmov diagnostirovaniya, apparaturnye sredstva) [Basics of technical diagnostics (optimization of diagnostic algorithms and equipment)], Energoatomizdat, Moscow, USSR.
2. McCluskey, E.J. (1986), Logic design principles: with emphasis on testable semicustom circuits, Prentice Hall PTR, New Jersey, USA.
3. Sogomonyan, E.S. and Slabakov, E.V. (1989), Samoproveryaemye ustroystva i otkazoustoychivye sistemy [Self-checking devices and failover systems], Radio i svyaz, Moscow, USSR.
4. Goessel, M. and Graf, S. (1994), Error detection circuits, McGraw-Hill, London, UK.
5. Abramovici, M., Breuer, M.A. and Friedman, A.D. (1998), Digital system testing and testable design, Computer Science Press.
6. Fujiwara, E. (2006), Code design for dependable systems: theory and practical applications, John Wiley & Sons, New Jersey, USA.
https://doi.org/10.1002/0471792748
7. Freiman, C.V. (1962), Optimal error detection codes for completely asymmetric binary channels, Information and Control, Vol. 5, Iss. 1, pp. 64-71. DOI: 10.1016/S0019-9958(62) 90223-1.
8. Berger, J.M. (1961), A note on error detecting codes for asymmetric channels, Information and Control, Vol. 4, Iss. 1, pp. 68-73. DOI: 10.1016/S0019-9958(61)80037-5.
https://doi.org/10.1016/S0019-9958(61)80037-5
9. Borden, J.M. (1982), Optimal asymmetric error detecting codes, Information and Control, Vol. 53, Iss. 1-2, pp. 66-73. DOI: 10.1016/S0019-9958(82)91125-1.
https://doi.org/10.1016/S0019-9958(82)91125-1
10. Dong, H. (1984), Modified Berger codes for detection of unidirectional errors, IEEE Transactions on Computers, Vol. C-33, June 1984, pp. 572-575.
https://doi.org/10.1109/TC.1984.1676484
11. Blaum, M. (1988), On systematic burst unidirectional error detecting codes, IEEE Transactions on Computers, Vol. 37, Iss. 4, pp. 453-457. DOI 10.1109/12.2190.
https://doi.org/10.1109/12.2190
12. Parhami, B. (1991), New class of unidirectional error-detection codes, Proceedings of IEEE International Conference on Computer Design: VLSI in Computers and Processors, October 14-16, 1991 (ICCD ‘9), Cambridge, MA, USA, pp. 574-577.
13. Das, D. and Touba, N.A. (1999), Weight-based codes and their application to concurrent error detection of multilevel circuits, Proceedings of 17th IEEE Test Symposium, USA, California, pp. 370-376.
https://doi.org/10.1109/VTEST.1999.766691
14. Göessel, M., Ocheretny, V., Sogomonyan, E. and Marienfeld, D. (2008), New methods of concurrent checking: Edition 1, Springer Science+Business Media B.V., Dodrecht, Netherlands. 
15. Sogomonyan, E.S. (1974), “Design of inbuilt test self-checking circuits for combinational devices”, Avtomatika i telemekhanika, no. 2, pp. 121-133.
16. Slabakov, E.V. and Sogomonyan, E.S. (1981), “Self-checking computing devices and systems (review)”, Avtomatika i telemekhanika, no. 11, pp. 147-167.
17. Ghosh, S., Basu, S. and Touba, N.A. (2005), Synthesis of low power CED circuits based on parity codes, Proceedings of the 23rd IEEE VLSI Test Symposium (VTS’05), pp. 315-320.
https://doi.org/10.1109/VTS.2005.80
18. Aksyonova, G.P. (2008), “On functional diagnosis of discrete devices under imperfect data processing conditions”, Problemy upravleniya, no. 5, pp. 62-66.
19. Busaba, F.Y. and Lala, P.K. (1994), Self-checking combinational circuit design for single and unidirectional multibit errors, Journal of Electronic Testing: Theory and Applications, Iss. 5, pp. 19-28. DOI: 10.1007/BF00971960.
https://doi.org/10.1007/BF00971960
20. Matrosova, A.Yu., Levin, I. and Ostanin, S.A. (2000), Self-checking synchronous FSM network design with low overhead, VLSI Design, Vol. 11, Iss. 1, ðp. 47-58. DOI: 10.1155/2000/46578.
https://doi.org/10.1155/2000/46578
21. Morosow, A., Saposhnikov, V.V., Saposhnikov, Vl.V. and Goessel, M. (1998), Self-checking combinational circuits with unidirectionally independent outputs, VLSI Design, Vol. 5, Iss. 4, pp. 333-345. DOI: 10.1155/1998/20389.
https://doi.org/10.1155/1998/20389
22. Saposhnikov, V.V., Morosov, A., Saposhnikov, Vl.V. and Göessel, M. (1998), A new design method for self-checking unidirectional combinational circuits, Journal of Electronic Testing: Theory and Applications, Vol. 12, Iss. 1-2, pp. 41-53. DOI: 10.1023/A:1008257118423.
https://doi.org/10.1023/A:1008257118423
23. Piestrak, S.J. (1995), Design of self-testing checkers for unidirectional error detecting codes, Oficyna Wydawnicza Politechniki Wroclavskiej, Wroclaw, Poland.
24. Mitra, S. and McCluskey, E.J. (2000), Which concurrent error detection scheme to choose?, Proceedings of International Test Conference, USA, Atlantic City, NJ, October 03-05, 2000, pp. 985-994. DOI: 10.1109/TEST.2000.894311.
https://doi.org/10.1109/TEST.2000.894311
25. Sapozhnikov, V., Sapozhnikov, Vl., Efanov, D. and Dmitriev, V. (2017), Method of combinational circuits testing by dividing its outputs into groups and using codes that effectively detect double errors, Proceedings of the 15th IEEE East-West Design & Test Symposium (EWDTS’2017), Novi Sad, Serbia, September 29-October 2, 2017, pp. 129-136. DOI: 10.1109/EWDTS.2017.8110123.
https://doi.org/10.1109/EWDTS.2017.8110123
26. Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2010), “On sum code properties in concurrent error detection systems”, Avtomatika i telemekhanika, no. 6, pp. 155-162.
27. Sapozhnikov, V., Sapozhnikov, Vl., Efanov, D. and Nikitin, D. (2014), Combinational circuits che- cking on the base of sum codes with one weighted data bit, Procedings of the 12th IEEE East-West Design & Test Symposium (EWDTS`2014), Kyiv, Ukraine, September 26-29, 2014, pp. 126-136. DOI:10.1109/EWDTS.2014.7027064.
28. Hamming, R.W. (1950), Error detecting and correcting codes, Bell System Technical Journal, 29 (2), pp. 147-160. MR0035935.
29. Mehov, V., Sapozhnikov, V., Sapozhnikov, Vl. and Urganskov, D. (2007), Concurrent error detection based on new code with modulo weighted transitions between information bits, Proceedings Test of 7thI EEE East-West Design &Workshop (EWDTW`2007), Erevan, Armenia, September 25-30, 2007, pp. 21-26.
30. Mekhov, V.B., Sapozhnikov, V.V., Sapozhnikov, Vl.V. (2008) “Control of combinational circuits based on modification sum codes”, Avtomatika i telemekhanika, no. 8, pp. 153-165.
31. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V. and Dmitriev, V.V. (2017), “New structures of the concurrent error detection systems for logic circuits”, Avtomatika i telemekhanika, no. 2, pp. 127-143.
https://doi.org/10.1134/S0005117917020096
32. Sapozhnikov, V., Sapozhnikov, Vl., Efanov, D. and Dmitriev, V. (2015), New sum code for effective detection of double errors in data vectors, Proceedings of the 13th IEEE East-West Design &Test Symposium (EWDTS`2015), Batumi, Georgia, September 26-29, 2015, pp. 154-159. DOI:10.1109/EWDTS.2015.7493123.
https://doi.org/10.1109/EWDTS.2015.7493123
33. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V. and Dmitriev, V.V. (2016), “On one modification of a code with summation of weighted transition between data vectors”, Izvestiya vysshikh uchebnykh zavedeniy. Fizika, Vol. 59, no. 8/2, pp. 89-92.
34. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Efanov, D.V. (2015), “Errors classification in information vectors of systematic codes”, Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie, Vol. 58, no. 5, pp. 333-343. DOI 10.17586/0021-3454-2015-58-5-333-343.
https://doi.org/10.17586/0021-3454-2015-58-5-333-343
35. Blyudov, A.A., Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2012), “Formation of the Berger modified code with minimum number of undetectable errors of data bits”, Elektronnoe modelirovanie, Vol. 34, no. 6, pp. 17-29.
36. Sapozhnikov, V., Sapozhnikov, Vl., Efanov, D. and Dmitriev, V. (2016), Weighted sum code without carries – is an optimum code with detection of any double errors in data vectors, Proceedings of the 14th IEEE East-West Design & Test Symposium (EWDTS`2016), Yerevan, Armenia, October 14-17, 2016, pp. 134-141. DOI:10.1109/EWDTS.2016. 7807686.
37. Collection of design Benchmarks, available at: http://ddd.fit.cvut.cz/prj/Benchmarks/.
38. Sentovich, E. M., Singh, K.J., Lavagno, K., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Stephan, P.R., Brayton, R. and Sangiovanni-Vincentelli, K.A. (1992), SIS: A system for sequential circuit synthesis, Electronics Research Laboratory, Department of Electrical Engineering and Computer Science, University of California, Berkeley, USA.

Full text: PDF