A.I. Krasilnikov
Èlektron. model. 2025, 47(4):21-38
https://doi.org/10.15407/emodel.47.04.021
ABSTRACT
Based on a family of two-component mixtures of distributions, a class К of symmetric non-Gaussian distributions with zero cumulant coefficients s of order is defined. Formulas for finding the values of the mixture’s weight coefficient, at which the coefficients 4, 6 are equal to zero, are obtained. The dependence of the cumulant coefficient on the mixture’s weight coefficient 8 is researched, as a result of which the conditions, under which the mixture’s coefficient 8 is equal to zero, is determined. Formulas for finding of the mixture’s weight coefficient values, at which the coefficient 8 = 0, are obtained. Examples of symmetric non-Gaussian distributions with zero cumulant coefficients 4, 6, 8 are considered. A methodology for computer modeling of non-Gaussian random variables of the class К is given.
KEYWORDS
non-Gaussian symmetric distributions, two-component mixtures of distributions, cumulant coefficients, kurtosis coefficient.
REFERENCES
- Malakhov, A.N. (1978). Kumuliantnyi analiz sluchainykh negaussovykh protsessov i ikh preobrazovanii [Cumulant analysis of random non-Gaussian processes and their transformations]. Moscow: Sovetskoie radio. (in Russian).
- Malkin, A.L., Sorin, A.Ya. & Finikov, D.B. (1986). Application of Cumulant Analysis in Statistical Processing of Seismic Records. Geologiia i geofizika, (5). 75-85. (in Russian)
- De Carlo, L.T. (1997). On the meaning and use of kurtosis. Psychological Methods, 2(3). 292-307.
- Blanca, M.J., Arnau, J., Lopez-Montiel, D., Bono, R. & Bendayan, R. (2013). Skewness and kurtosis in real data samples. Methodology, (9). 78-84. https://doi.org/10.1027/1614-2241/a00005
- Bezuglov, D.A., Andriushchenko, I.V. & Shvidchenko, S.A. (2011). Cumulant method for identifying the type of distribution law of measurement results. Servis v Rossii i za rubezhom, (5). 30-39. (in Russian).
- Kuznetsov, B.F., Borodkin, D.K. & Lebedeva, L.V. (2013). Cumulant Models of Additional Errors. Sovremennyie tekhnologii. Sistemnyi analiz. Modelirovaniie, 1(37). 134-138. (in Russian).
- Alexandrou, D., De Moustier, C. & Haralabus, G. (1992). Evaluation and verification of bottom acoustic reverberation statistics predicted by the point scattering model. J. Acoust. Soc. Am., 91(3). 1403-1413.
- Müller, R.A.J., von Benda-Beckmann, A.M., Halvorsen, M.B. & Ainslie, M.A. (2020). Application of kurtosis to underwater sound. J. Acoust. Soc. Am., 148(2). 780-792. https://doi.org/10.1121/10.0001631
- Zapevalov, A.S. & Garmashov, A.V. (2021). Skewness and Kurtosis of the Surface Wave in the Coastal Zone of the Black Sea. Morskoi gidrofizicheskii zhurnal, 37(4). 447-459. 10.22449/0233-7584-2021-4-447-459 (in Russian).
- Wang,H. & Chen, P. (2009). Fault Diagnosis Method Based on Kurtosis Wave and Information Divergence for Rolling Element Bearings. WSEAS Transactions on Systems, 8(10). 1155-1165.
- Mohammed, T.S., Rasheed, M., Al-Ani, M., Al-Shayea, Q. & Alnaimi, F. (2020). Fault Diagnosis of Rotating Machine Based on Audio Signal Recognition System: An Efficient Approach. International Journal of Simulation: Systems, Science & Technology, 21(1). 8.1-8.8. 10.5013/IJSSST.a.21.01.08
- Krasilnikov, A.I., Beregun, V.S. & Polobyuk, T.A. (2019). Kumuliantnyie metody v zadachakh shumovoi diagnostiki teploenergeticheskogo oborudovaniia [Cumulant methods in the problems of noise diagnostics of heat-and-power equipment]. A.I. Krasilnikov [Ed.]. Kyiv: Osvita Ukrainy. (in Russian).
- Kunchenko, Yu.P. (2001).Polinomialnyie otsenki parametrov blizkikh k gaussovskim sluchainykh velichin. Ch. 1. Stokhasticheskiie polinomy, ikh svoistva i primeneniia dlia nakhozhdeniia otsenok parametrov [Polynomial Parameter Estimations of Close to Gaussian Random variables. Part 1. Stochastic Polynomials, Their Properties and Applications for Finding Parameter Estimations]. Cherkassy: ChITI. (in Russian).
- Hildebrand, D.K. (1971). Kurtosis measures bimodality? Amer. statist., 25(1). 42-43.
- Joiner, B.L. & Rosenblatt, J.R. (1971). Some properties of the range in samples from Tukey’s symmetric lambda distributions. Jour. Amer. Statist. Assoc., 66(334). 394-399.
- Kale, B.K. & Sebastian, G. (1996). On a Class of Symmetric Nonnormal Distributions with a Kurtosis of Three. In H.N. Nagaraja et al. (eds.) Statistical Theory and Applications (P. 55-63). Springer-Verlag New York, Inc.
- Johnson, M.E., Tietjen, G.L. & Beckman, R.J. (1980). A New Family of Probability Distributions with Applications to Monte Carlo Studies. Jour. Amer. Statist. Assoc., 75(370). 276-279.
- Krasil’nikov, A.I. (2013). Class non-Gaussian distributions with zero skewness and kurtosis. Radioelectronics and Communications Systems, 56(6), 312-320. https://doi.org/ 10.3103/S0735272713060071
- Krasilnikov, A.I. (2017). Class of Non-Gaussian Symmetric Distributions with Zero Coefficient of Kurtosis. Elektronnoie modelirovaniie, 39(1), 3-17. https://doi.org/10.15407/ emodel.39.01.003 (in Russian).
- Barakat, H.M. (2015). A new method for adding two parameters to a family of distributions with application to the normal and exponential families. Statistical Methods & Applications, 24(3), 359-372. https://doi.org/10.1007/s10260-014-0265-8
- Barakat,H.M., Aboutahoun, A.W. & El-kadar, N.N. (2019). A New Extended Mixture Skew Normal Distribution, With Applications. Revista Colombiana de Estadstica, 42(2), 167-183. http://dx.doi.org/10.15446/rce.v42n2.70087
- Sulewski, P. (2021). Two-piece power normal distribution. Communications in Statistics — Theory and Methods, 50(11), 2619-2639. https://doi.org/10.1080/03610926.2019.1674871
- Krasylnikov, O.I. (2023). Classification of models of two-component mixtures of symmetrical distributions with zero kurtosis coefficient. Elektronne modeliuvannia, 45(5). 20-38. DOI: https://doi.org/10.15407/emodel.45.05.020 (in Ukrainian).
- Krasylnikov, O.I. (2024). Analysis of the Excess Kurtosis of Two-Component Mixtures of Shifted Non-Gaussian Distributions. Elektronne modeliuvannia, 46(2), 15-34. https://doi.org/10.15407/emodel.46.02.015 (in Ukrainian).
- Krasilnikov, A.I. (2018). The Application of Two-Component Mixtures of Shifted Distributions for Modeling Perforated Random Variables. Elektronnoie modelirovaniie, 40(6), 83-98. https://doi.org/10.15407/emodel.40.06.083 (in Russian).
- Krasilnikov, A.I. (2020). Analysis of Cumulant Coefficients of Two-component Mixtures of Shifted Gaussian Distributions with Equal Variances. Elektronnoie modelirovanie, 42(3), 71-88. https://doi.org/10.15407/emodel.42.03.071 (in Russian).
- Krasylnikov, O.I. (2021). Analysis of Cumulant Coefficients of Two-Component Mixtures of Shifted Non-Gaussian Distributions. Elektronne modeliuvannia, 43(5), 73-92. https://doi.org/10.15407/emodel.43.05.073 (in Ukrainian).
- Krasylnikov, O.I. (2024). Modeling of Two-component Mixtures of Shifted Distributions with Zero Cumulant Coefficients. Elektronne modeliuvannia, 46(4), 19-38. https://doi.org/ 10.15407/emodel.46.04.019 (in Ukrainian).
- Stuart A. & Ord J. (2010). Kendall’s Advanced Theory of Statistics, Vol. 1: Distribution Theory. New Jersey: Wiley.Krasilnikov, A.I. (2019). Family of Subbotin distributions and its classification, Elektronnoie modelirovanie, 41(3), 15-31. DOI: https://doi.org/10.15407/emodel.41.03.015 (in Russian).
- Krasilnikov, A.I. (2019). Family of Subbotin distributions and its classification, Elektronnoie modelirovanie, 41(3), 15-31. DOI: https://doi.org/10.15407/emodel.41.03.015 (in Russian).