SIMULATION MODELING OF AN AUTONOMOUS UNMANNED UNDERWATER VEHICLE CIRCULAR MOTION TAKING INTO ACCOUNT RANDOM INTERFERENCE IN SENSOR SIGNALS

Ye.O. Zolotarov, N.I. Bouraou

Èlektron. model. 2025, 47(6):69-83

https://doi.org/10.15407/emodel.47.06.069

ABSTRACT

Research is devoted to the development of an integrated navigation system for an autonomous unmanned underwater vehicle (AUV) to determine its current coordinates and navigation parameters in different modes of movement. Simulation modeling of the AUV's circular motion was performed, and the influence of random disturbances in the sensors of the inertial measurement module (IMM) on the accumulation of course, speed, and position errors was analyzed. For circular motion of the ABPA, using the example of the inertial navigation system (INS) from Inertial Labs, mathematical and computer modeling of the INS operation was performed with reference signals from the IMS sensors, taking into account random disturbances inherent in real sensors, and an assessment of navigation errors was performed using analytical models. The obtained analysis of the errors showed that in the absence of external correction, the errors in determining the navigation parameters steadily accumulate, which leads to a significant deviation of the ABPA's trajectory from the specified circular trajectory.

KEYWORDS

autonomous unmanned underwater vehicle, inertial navigation system, inertial measurement unit, simulation, gyroscope, accelerometer.

REFERENCES

  1. Bouraou, N.I. and Guryanenko, S.O. (2023) ‘Analysis of automatic control systems for a multi-purpose autonomous unmanned underwater vehicle with complex motion dynamics’, Bulletin of KPI. Series: Instrumentation Engineering, 65(1), pp. 5-12. doi: https://doi.org/10.20535/1970.65(1).2023.283195. (Ukraine)
  2. Balestrieri E., Daponte P., De Vito L. and Lamonaca F. (2021) ‘Sensors and Measurements for Unmanned Systems: An Overview’, Sensors, 21(4), p. 1518. DOI: https://doi.org/ 10.3390/ s21041518.
  3. Snyder, W., Renken, M. and Van Uffelen, L. (2023) ‘Performance of a MEMS IMU for Localizing a Seaglider AUV on an Acoustic Tracking Range’, IEEE Journal of Oceanic Engineering, 48(20), pp. 323-331. DOI: https://doi.org/10.1109/JOE.2022.3198474.
  4. Passaro, V.M.N., Cuccovillo, A., Vaiani, L., De Carlo, M. and Campanella, C. E. (2017) ‘Gyroscope technology and applications: A review in the industrial perspective’, Sensors, 17, pp. 2284-2305. DOI: https://doi.org/10.3390/s17102284.
  5. Medagoda, L., Williams, S.B., Pizarro, O., Kinsey, J.C. and Jakuba, M.V. (2016) ‘Mid-water current aided localization for autonomous underwater vehicles’, Autonomous Robots, 40, pp. 1207-1227. https://doi.org/10.1007/s10514-016-9547-3.
  6. Snyder, W., Van Uffelen, L. and Renken, M. (2019) ‘Effects of incorporating inertial measurements on the localization accuracy of the Seaglider AUV,’ IEEE OCEANS Conf., pp. 1-6. DOI: https://doi.org/10.1109/OCEANSE.2019.8867252.
  7. Batista, P., Silvestre, C. and Oliveira, P. (2010) ‘Optimal position and velocity navigation filters for autonomous vehicles’, Automatica, 46(4), pp. 767-774. DOI: https://doi.org/ 10.1016/j.automatica.2010.02.004.
  8. Zolotarov, Y.O. and Bouraou, N.I., (2025). Simulation of the Circular Motion of an Autonomous Unmanned Underwater Vehicle and the Signals of the Sensors of the Inertial Navigation System, Èlektronnoe modelirovanie, 47(1), pp. 116-132. DOI: https://doi.org/ 10.15407/emodel.47.01.116
  9. Inertial Labs (2024) INS — GPS-Aided Inertial Navigation Systems. Available at: https://inertiallabs.com/products/ins-inertial-navigation-systems/ (Accessed: 5 December 2024).
  10. Meleshko, V.V. and Nesterenko, O.I. (2011) Platform-Free Inertial Navigation Systems: A Tutorial. Kirovohrad: POLYMED-Service. ISBN 978-966-7813-75-8. (Russian).
  11. Groves, P.D. (2013) Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. 2nd ed. Artech House, Boston. ISBN-13: 978-1-58053-255-6.
  12. Inertial Labs (2025) IMU, AHRS, INS, MRU, LiDAR RESEPI, WOM. Available at: https://inertiallabs.com/wp-content/uploads/2025/01/INS-B-P-D-DL_Datasheet_rev-6.29_ Jan_2025.pdf (Accessed: 24 June 2025).
  13. Woodman, O.J. (2007) An introduction to inertial navigation. Technical Report UCAM-CL-TR-696, University of Cambridge Computer Laboratory. Available at: https://www.cl. cam.ac.uk/techreports/UCAM-CL-TR-696.pdf.
  14. Armenise, M. N., Ciminelli, C., Dell'Olio, F. and Passaro, V. M. (2010) Advances in gyroscope technologies. Springer Science & Business Media. ISBN 978-3-642-15493-5.
  15. VectorNav (n.d.). 3.3 INS Error Budget — Inertial Navigation Primer. VectorNav Technologies. Available at: https://www.vectornav.com/resources/inertial-navigation-primer/ specifications--and--error-budgets/specs-inserrorbudget.

Full text: PDF